Tackling the dream challenge for gene regulatory networks reverse engineering
Contributo in Atti di convegno
Data di Pubblicazione:
2011
Abstract:
The construction and the understanding of Gene Regulatory Networks (GRNs) are among the hardest tasks faced by systems biology. The inference of a GRN from gene expression data (the GRN reverse engineering), is a challenging task that requires the exploitation of diverse mathematical and computational techniques. The DREAM conference proposes several challenges about the inference of biological networks and/or the prediction of how they are influenced by perturbations.
This paper describes a method for GRN reverse engineering that the authors submitted to the 2010 DREAM challenge. The methodology is based on a combination of well known statistical methods into a Naive Bayes classifier. Despite its simplicity the approach fared fairly well when compared to other proposals on real networks.
Tipologia CRIS:
04B-Conference paper in rivista
Elenco autori:
Alessia Visconti; Roberto Esposito; Francesca Cordero
Link alla scheda completa:
Pubblicato in: