Skip to Main Content (Press Enter)

Logo UNITO
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione

UNI-FIND
Logo UNITO

|

UNI-FIND

unito.it
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione
  1. Pubblicazioni

Tackling the dream challenge for gene regulatory networks reverse engineering

Contributo in Atti di convegno
Data di Pubblicazione:
2011
Abstract:
The construction and the understanding of Gene Regulatory Networks (GRNs) are among the hardest tasks faced by systems biology. The inference of a GRN from gene expression data (the GRN reverse engineering), is a challenging task that requires the exploitation of diverse mathematical and computational techniques. The DREAM conference proposes several challenges about the inference of biological networks and/or the prediction of how they are influenced by perturbations. This paper describes a method for GRN reverse engineering that the authors submitted to the 2010 DREAM challenge. The methodology is based on a combination of well known statistical methods into a Naive Bayes classifier. Despite its simplicity the approach fared fairly well when compared to other proposals on real networks.
Tipologia CRIS:
04B-Conference paper in rivista
Elenco autori:
Alessia Visconti; Roberto Esposito; Francesca Cordero
Autori di Ateneo:
CORDERO Francesca
ESPOSITO Roberto
VISCONTI Alessia
Link alla scheda completa:
https://iris.unito.it/handle/2318/89051
Pubblicato in:
LECTURE NOTES IN ARTIFICIAL INTELLIGENCE
Journal
LECTURE NOTES IN ARTIFICIAL INTELLIGENCE
Series
  • Dati Generali

Dati Generali

URL

http://www.springer.com/computer/ai/book/978-3-642-23953-3
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.6.1.0