Skip to Main Content (Press Enter)

Logo UNITO
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione

UNI-FIND
Logo UNITO

|

UNI-FIND

unito.it
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione
  1. Pubblicazioni

Exponential ergodicity and regularity for equations with Levy noise

Articolo
Data di Pubblicazione:
2012
Abstract:
We prove exponential convergence to the invariant measure, in the total variation norm, for solutions of SDEs driven by α-stable noises in finite and in infinite dimensions. Two approaches are used. The first one is based on Liapunov’s function approach by Harris, and the second on Doeblin’s coupling argument. Irreducibility and uniform strong Feller property play an essential role in both approaches. We concentrate on two classes of Markov processes: solutions of finite dimensional equations, introduced in [E. Priola, Osaka J. Math. 2012] with Holder continuous drift and a general, non-degenerate, symmetric α-stable noise, and infinite dimensional parabolic systems, introduced in [E. Priola, J. Zabczyk, PTRF 2011], with Lipschitz drift and cylindrical α-stable noise. We show that if the nonlinearity is bounded, then the processes are exponential mixing.
Tipologia CRIS:
03A-Articolo su Rivista
Keywords:
Stochastic PDEs; α-stable noise, Holder continuous drift; Harris’ theorem; Coupling; Total variation; Exponential mixing; Ornstein–Uhlenbeck processes.
Elenco autori:
E. Priola; A. Shirikyan; L. Xu; J. Zabczyk
Link alla scheda completa:
https://iris.unito.it/handle/2318/104543
Pubblicato in:
STOCHASTIC PROCESSES AND THEIR APPLICATIONS
Journal
  • Dati Generali

Dati Generali

URL

http://arxiv.org/pdf/1102.5553v2; http://www.elsevier.com/locate/spa
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.5.0.1