Skip to Main Content (Press Enter)

Logo UNITO
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione

UNI-FIND
Logo UNITO

|

UNI-FIND

unito.it
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione
  1. Pubblicazioni

Parameter-dependent Pseudodifferential Operators of Toelitz Type

Articolo
Data di Pubblicazione:
2015
Abstract:
We present a calculus of pseudodifferential operators that contains both usual parameter-dependent operators - where a real parameter au enters as an additional covariable - as well as operators not depending on au. Parameter-ellipticity is characterized by the invertibility of three associated principal symbols. The homogeneous principal symbol is not smooth on the whole co-sphere bundle but only admits directional limits at the north-poles, encoded by a principal angular symbol. Furthermore there is a limit-family for au o+infty. Ellipticity permits to construct parametrices that are inverses for large values of the parameter. We then obtain sub-calculi of Toeplitz type with a corresponding symbol structure. In particular, we discuss invertibility of operators of the form P_1A( au)P_0 where both P_0 and P_1 are zero-order projections and A( au) is a usual parameter-dependent operator of arbitrary order or A( au)= au^{mu}-A with a pseudodifferential operator A of positive integer order mu.
Tipologia CRIS:
03A-Articolo su Rivista
Keywords:
parameter-dependent pseudodifferential operators; pseudodifferential operators of Toeplitz type; ellipticity and parametrix construction; resolvent
Elenco autori:
J. Seiler
Autori di Ateneo:
SEILER Joerg
Link alla scheda completa:
https://iris.unito.it/handle/2318/1502689
Pubblicato in:
ANNALI DI MATEMATICA PURA ED APPLICATA
Journal
  • Dati Generali

Dati Generali

URL

http://arXiv.org/pdf/1202.4574
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.6.1.0