Skip to Main Content (Press Enter)

Logo UNITO
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione

UNI-FIND
Logo UNITO

|

UNI-FIND

unito.it
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione
  1. Pubblicazioni

Secant varieties to Osculating Varieties of Veronese embeddings of P n

Articolo
Data di Pubblicazione:
2009
Abstract:
A well known theorem by Alexander-Hirschowitz states that all the higher secant varieties of $V_{n,d}$ (the $d$-uple embedding of $\mathbb{P}^n$) have the expected dimension, with few known exceptions. We study here the same problem for $T_{n,d}$, the tangential variety to $V_{n,d}$, and prove a conjecture, which is the analogous of Alexander-Hirschowitz theorem, for $n\leq 9$. Moreover. we prove that it holds for any $n,d$ if it holds for $d=3$. Then we generalize to the case of $O_{k,n,d}$, the $k$-osculating variety to $V_{n,d}$, proving, for $n=2$, a conjecture that relates the defectivity of $\sigma_s(O_{k,n,d})$ to the Hilbert function of certain sets of fat points in $\mathbb{P}^n$.
Tipologia CRIS:
03A-Articolo su Rivista
Elenco autori:
A.Bernardi; M.V.Catalisano; A.Gimigliano; M.Idà.
Link alla scheda completa:
https://iris.unito.it/handle/2318/129177
Pubblicato in:
JOURNAL OF ALGEBRA
Journal
  • Dati Generali

Dati Generali

URL

http://www.sciencedirect.com/science/article/pii/S0021869308005486
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.4.2.0