Data di Pubblicazione:
2013
Abstract:
We prove continuity results for Fourier integral operators with
symbols in modulation spaces, acting between modulation spaces.
The phase functions belong to a class of nondegenerate generalized quadratic forms that includes Schrödinger propagators and pseudodifferential operators.
As a byproduct we obtain a characterization of all exponents $p,q,r_1,r_2,t_1,t_2 \in [1,\infty]$ of modulation spaces such that a symbol in $M^{p,q}$ gives a pseudodifferential operator that is continuous from $M^{r_1,r_2}$ into $M^{t_1,t_2}$.
Tipologia CRIS:
03A-Articolo su Rivista
Keywords:
Modulation spaces; Fourier Integral Operators; pseudodifferential operators
Elenco autori:
E. Cordero; A. Tabacco; P. Wahlberg
Link alla scheda completa:
Pubblicato in: