Data di Pubblicazione:
2011
Abstract:
The dimming of Type Ia supernovae could be the result of Hubble-scale inhomogeneity in the matter and spatial curvature, rather than signaling the presence of a dark energy component. A key challenge for such models is to fit the detailed spectrum of the cosmic microwave background (CMB). We present a detailed discussion of the small-scale CMB in an inhomogeneous universe, focusing on spherically symmetric `void' models. We allow for the dynamical effects of radiation while analyzing the problem, in contrast to other work which inadvertently fine tunes its spatial profile. This is a surprisingly important effect and we reach substantially different conclusions. Models which are open at CMB distances fit the CMB power spectrum without fine tuning; these models also fit the supernovae and local Hubble rate data which favours a high expansion rate. Asymptotically flat models may fit the CMB, but require some extra assumptions. We argue that a full treatment of the radiation in these models is necessary if we are to understand the correct constraints from the CMB, as well as other observations which rely on it, such as spectral distortions of the black body spectrum, the kinematic Sunyaev-Zeldovich effect or the Baryon Acoustic Oscillations.
Tipologia CRIS:
03A-Articolo su Rivista
Elenco autori:
Chris Clarkson;Marco Regis
Link alla scheda completa:
Pubblicato in: