Activity patterns of metal oxide catalysts in the synthesis of N-phenylpropionamide from propanoic acid and aniline
Articolo
Data di Pubblicazione:
2015
Abstract:
The reactivities of various commercial and lab-made oxide samples (e.g., γ-Al2O3, CeO2, ZrO2 and TiO2) in
the heterogeneous catalytic synthesis of N-phenylpropionamide (T, 383 K) from aniline and propanoic acid
have been investigated. All the materials studied drive the direct synthesis of the amide to an extent
depending on both the chemical and structural properties. A 0th-order kinetic dependence on the substrate
concentrations suggests that the reaction proceeds via a Langmuir–Hinshelwood (L–H) pathway
under kinetic control of the adsorption–desorption steps (the rate determining step, r.d.s.). The comparative
analysis of the activity data on the basis of the relative surface specific kinetic constant discloses a superior
surface reactivity of TiO2, CeO2 and ZrO2 over the γ-Al2O3 system, and also highlights marked differences
in the catalytic functionality of the titania samples. IR spectroscopic studies of the carboxylic acids and
amine adsorption and interaction patterns show the formation of the bidentate, bridging, and unidentate
carboxylate intermediates accounting for the different amidation functionalities of the studied materials.
Tipologia CRIS:
03A-Articolo su Rivista
Elenco autori:
Francesco Arena; Chiara Deiana; Agata F. Lombardo; Pavlo Ivanchenko; Yuriy Sakhno; Giuseppe Trunfio; Gianmario Martra
Link alla scheda completa:
Link al Full Text:
Pubblicato in: