Skip to Main Content (Press Enter)

Logo UNITO
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione

UNI-FIND
Logo UNITO

|

UNI-FIND

unito.it
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione
  1. Pubblicazioni

Local uncertainty principles for the Cohen class

Articolo
Data di Pubblicazione:
2014
Abstract:
In this paper we analyze time-frequency representations in the Cohen class, i.e., quadratic forms expressed as a convolution between the classical Wigner transform and a kernel, with respect to uncertainty principles of local type. More precisely the results we obtain concerning the energy distribution of these representations show that a "too large" amount of energy cannot be concentrated in a "too small" set of the time-frequency plane. In particular, for a signal $f\in L^2(\Rd)$, the energy of a time-frequency representation contained in a measurable set $M$ must be controlled by the standard deviations of $\vert f\vert^2$ and $\vert \hat{f}\vert^2$, and by suitable quantities measuring the size of $M$.
Tipologia CRIS:
03A-Articolo su Rivista
Keywords:
Time-Frequency representations, Wigner sesquilinear and quadratic form, local uncertainty principles.
Elenco autori:
P. Boggiatto; E. Carypis; A. Oliaro
Autori di Ateneo:
BOGGIATTO Paolo
OLIARO Alessandro
Link alla scheda completa:
https://iris.unito.it/handle/2318/149791
Link al Full Text:
https://iris.unito.it/retrieve/handle/2318/149791/71448/Boggiatto%20Carypis%20Oliaro.pdf
Pubblicato in:
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS
Journal
  • Dati Generali

Dati Generali

URL

http://www.sciencedirect.com/science/article/pii/S0022247X14004363
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.6.1.0