Data di Pubblicazione:
2015
Abstract:
The advent of nuclear spins hyperpolarization techniques represents a breakthrough in the field of medical diagnoses by magnetic resonance imaging. Dynamic nuclear polarization (DNP) is the most widely used method, and hyperpolarized metabolites such as [1-(13)C]-pyruvate are shown to report on status of tumours. Parahydrogen-induced polarization (PHIP) is a chemistry-based technique, easier to handle and much less expensive in respect to DNP, with significantly shorter polarization times. Its main limitation is the availability of unsaturated precursors for the target substrates; for instance, acetate and pyruvate cannot be obtained by direct incorporation of the parahydrogen molecule. Herein we report a method that allows us to achieve hyperpolarization in this kind of molecule by means of a tailored precursor containing a hydrogenable functionality that, after polarization transfer to the target (13)C moiety, is cleaved to obtain the metabolite of interest. The reported procedure can be extended to a number of other biologically relevant substrates.
Tipologia CRIS:
03A-Articolo su Rivista
Keywords:
Magnetic Resonance Spectroscopy, Magnetic Resonance Imaging, Hyperpolarization, parahydrogen, metabolites
Elenco autori:
Reineri, Francesca; Boi, Tommaso; Aime, Silvio
Link alla scheda completa:
Pubblicato in: