Skip to Main Content (Press Enter)

Logo UNITO
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione

UNI-FIND
Logo UNITO

|

UNI-FIND

unito.it
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione
  1. Pubblicazioni

A symbolic handling of Sheffer polynomials

Articolo
Data di Pubblicazione:
2011
Abstract:
We revisit the theory of Sheffer sequences by means of the formalism introduced in Rota and Taylor (SIAM J Math Anal 25(2):694–711, 1994) and developed in Di Nardo and Senato (Umbral nature of the Poisson random variables. Algebraic combinatorics and computer science, pp 245–256, Springer Italia, Milan, 2001, European J Combin 27(3):394–413, 2006). The advantage of this approach is twofold. First, this new syntax allows us noteworthy computational simplification and conceptual clarification in several topics involving Sheffer sequences, most of the open questions proposed in Taylor (Comput Math Appl 41:1085–1098, 2001) finds answer. Second, most of the results presented can be easily implemented in a symbolic language. To get a general idea of the effectiveness of this symbolic approach, we provide a formula linking connection constants and Riordan arrays via generalized Bell polynomials, here defined. Moreover, this link allows us to smooth out many results involving Bell Polynomials and Lagrange inversion formula.
Tipologia CRIS:
03A-Articolo su Rivista
Keywords:
Umbral calculus – Sheffer sequences – Connection constants – Riordan arrays – Lagrange inversion formula
Elenco autori:
DI NARDO, Elvira; Niederhausen, H.; SENATO PULLANO, D.
Autori di Ateneo:
DI NARDO Elvira
Link alla scheda completa:
https://iris.unito.it/handle/2318/1561329
Pubblicato in:
ANNALI DI MATEMATICA PURA ED APPLICATA
Journal
  • Dati Generali

Dati Generali

URL

http://www.springerlink.com/content/h332k7l22757lw18/
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.6.1.0