Skip to Main Content (Press Enter)

Logo UNITO
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione

UNI-FIND
Logo UNITO

|

UNI-FIND

unito.it
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione
  1. Pubblicazioni

Positive subharmonic solutions to nonlinear ODEs with indefinite weight

Articolo
Data di Pubblicazione:
2018
Abstract:
We prove that the superlinear indefinite equation u'' + a(t)u^p = 0, where p > 1 and a(t) is a T-periodic sign-changing function satisfying the (sharp) mean value condition ∫a(t)dt<0, has positive subharmonic solutions of order k for any large integer k, thus providing a further contribution to a problem raised by G. J. Butler in its pioneering paper [JDE, 1976]. The proof, which applies to a larger class of indefinite equations, combines coincidence degree theory (yielding a positive harmonic solution) with the Poincaré-Birkhoff fixed point theorem (giving subharmonic solutions oscillating around it).
Tipologia CRIS:
03A-Articolo su Rivista
Keywords:
subharmonics, indefinite weight, Poincaré-Birkhoff theorem, Morse index, coincidence degree
Elenco autori:
Alberto, Boscaggin; Guglielmo, Feltrin
Autori di Ateneo:
BOSCAGGIN Alberto
Link alla scheda completa:
https://iris.unito.it/handle/2318/1562627
Link al Full Text:
https://iris.unito.it/retrieve/handle/2318/1562627/518028/Boscaggin-Feltrin_2016.pdf
Pubblicato in:
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS
Journal
  • Dati Generali

Dati Generali

URL

http://dx.doi.org/10.1142/S0219199717500213; https://arxiv.org/abs/1605.02500
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.6.1.0