The study of electrochemically active planktonic microbes in microbial fuel cells in relation to different carbon-based anode materials
Articolo
Data di Pubblicazione:
2016
Abstract:
MFCs (Microbial fuel cells) are bio-electrochemical systems that convert chemical energy into electrical energy by utilizing electrochemically active bacteria.rt-qPCR (Real-time quantitative polymerase chain reaction) assays were used to identify the planktonic bacteria present in the production of electricity in MFCs. The relationship between the bacterial communities with different carbon-based anode materials, such as C-FELT (carbon felt), carbon felt with C-PANI (polyaniline) and C-SADDLES (carbon-coated Berl saddles), were investigated.The distribution of bacteria among the three different MFC anode materials was evaluated. Significant differences were observed for total bacteria (p < 0.01), Geobacter (p < 0.05) and Shewanella (p < 0.05). These differences were generally due to higher bacterial counts in the C-FELT anode MFC. Significant differences in maximum power density (p < 0.001) were also observed; the C-PANI MFC showed the highest maximum power density of 28.5 W/m3 when compared with the C-FELT (4.7 W/m3) and C-SADDLES (4.6 W/m3) MFCs. The greatest number of electrochemically active planktonic microbes was observed in the C-FELT MFC, whereas the C-PANI MFC had the optimum carbon-based anode material.
Tipologia CRIS:
03A-Articolo su Rivista
Keywords:
Bacterial communities; Carbon felt; Carbon-coated Berl saddles; Microbial fuel cells; Polyaniline deposition; Rt-qPCR; Pollution; Energy (all)
Elenco autori:
SchilirĂ², T; Tommasi, T.; Armato, C.; Hidalgo, D.; Traversi, D.; Bocchini, S.; Gilli, G.; Pirri, C.F.
Link alla scheda completa:
Link al Full Text:
Pubblicato in: