Skip to Main Content (Press Enter)

Logo UNITO
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione

UNI-FIND
Logo UNITO

|

UNI-FIND

unito.it
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione
  1. Pubblicazioni

Counting arithmetic formulas

Articolo
Data di Pubblicazione:
2015
Abstract:
An arithmetic formula is an expression involving only the constant $1$, and the binary operations of addition and multiplication, with multiplication by $1$ not allowed. We obtain an asymptotic formula for the number of arithmetic formulas evaluating to $n$ as $n$ goes to infinity, solving a conjecture of E.~K.~Gnang and D.~Zeilberger. We give also an asymptotic formula for the number of arithmetic formulas evaluating to $n$ and using exactly $k$ multiplications. Finally we analyze three specific encodings for producing arithmetic formulas. For almost all integers $n$, we compare the lengths of the arithmetic formulas for $n$ that each encoding produces with the length of the shortest formula for $n$ (which we estimate from below). We briefly discuss the time-space tradeoff offered by each.
Tipologia CRIS:
03A-Articolo su Rivista
Keywords:
Discrete Mathematics and Combinatorics
Elenco autori:
Gnang, Edinah K.; Radziwiłł, Maksym; Sanna, Carlo
Link alla scheda completa:
https://iris.unito.it/handle/2318/1622120
Link al Full Text:
https://iris.unito.it/retrieve/handle/2318/1622120/289290/counting.pdf
Pubblicato in:
EUROPEAN JOURNAL OF COMBINATORICS
Journal
  • Dati Generali

Dati Generali

URL

http://www.elsevier.com/wps/find/journaldescription.cws_home/622824/description#description; https://arxiv.org/abs/1406.1704
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.5.0.1