Skip to Main Content (Press Enter)

Logo UNITO
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione

UNI-FIND
Logo UNITO

|

UNI-FIND

unito.it
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione
  1. Pubblicazioni

On the rate of convergence to equilibrium for the linear Boltzmann equation with soft potentials

Articolo
Data di Pubblicazione:
2018
Abstract:
In this work we present several quantitative results of convergence to equilibrium for the linear Boltzmann operator with soft potentials under Grad’s angular cutoff assumption. This is done by an adaptation of the famous entropy method and its variants, resulting in explicit algebraic, or even stretched exponential, rates of convergence to equilibrium under appropriate assumptions. The novelty in our approach is that it involves functional inequalities relating the entropy to its production rate, which have independent applications to equations with mixed linear and non-linear terms. We also briefly discuss some properties of the equation in the non-cut-off case and conjecture what we believe to be the right rate of convergence in that case.
Tipologia CRIS:
03A-Articolo su Rivista
Keywords:
Functional inequalities; Entropy; Boltzmann equation; Soft potentials
Elenco autori:
José Canizo; Amit Einav; Bertrand Lods
Autori di Ateneo:
LODS Bertrand
Link alla scheda completa:
https://iris.unito.it/handle/2318/1661630
Link al Full Text:
https://iris.unito.it/retrieve/handle/2318/1661630/394208/1-s2.0-S0022247X17311307-main.pdf
Pubblicato in:
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS
Journal
  • Dati Generali

Dati Generali

URL

https://www.sciencedirect.com/science/article/pii/S0022247X17311307
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.6.1.0