Skip to Main Content (Press Enter)

Logo UNITO
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione

UNI-FIND
Logo UNITO

|

UNI-FIND

unito.it
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione
  1. Pubblicazioni

Data in support of sustained upregulation of adaptive redox homeostasis mechanisms caused by KRIT1 loss-of-function

Articolo
Data di Pubblicazione:
2018
Abstract:
This article contains additional data related to the original research article entitled "KRIT1 loss-of-function induces a chronic Nrf2-mediated adaptive homeostasis that sensitizes cells to oxidative stress: implication for Cerebral Cavernous Malformation disease" (Antognelli et al., 2017) [1]. Data were obtained by si-RNA-mediated gene silencing, qRT-PCR, immunoblotting, and immunohistochemistry studies, and enzymatic activity and apoptosis assays. Overall, they support, complement and extend original findings demonstrating that KRIT1 loss-of-function induces a redox-sensitive and JNK-dependent sustained upregulation of the master Nrf2 antioxidant defense pathway and its downstream target Glyoxalase 1 (Glo1), and a drop in intracellular levels of AP-modified Hsp70 and Hsp27 proteins, leading to a chronic adaptive redox homeostasis that sensitizes cells to oxidative DNA damage and apoptosis. In particular, immunoblotting analyses of Nrf2, Glo1, AP-modified Hsp70 and Hsp27 proteins, HO-1, phospho-c-Jun, phospho-ERK5, and KLF4 expression levels were performed both in KRIT1-knockout MEF cells and in KRIT1-silenced human brain microvascular endothelial cells (hBMEC) treated with the antioxidant Tiron, and compared with control cells. Moreover, immunohistochemistry analysis of Nrf2, Glo1, phospho-JNK, and KLF4 was performed on histological samples of human CCM lesions. Finally, the role of Glo1 in the downregulation of AP-modified Hsp70 and Hsp27 proteins, and the increase in apoptosis susceptibility associated with KRIT1 loss-of-function was addressed by si-RNA-mediated Glo1 gene silencing in KRIT1-knockout MEF cells.
Tipologia CRIS:
03A-Articolo su Rivista
Keywords:
Adaptive redox homeostasis; Antioxidant defense; Argpyrimidine-modified heat-shock proteins; c-Jun; CCM1/KRIT1; Cerebral cavernous malformations; Cerebrovascular disease; Glyoxalase 1 (Glo1); Heme oxygenase-1 (HO-1); Nuclear factor erythroid 2-related factor 2 (Nrf2); Oxidative DNA damage and apoptosis; Oxidative stress; Redox signaling; Multidisciplinary
Elenco autori:
Antognelli, Cinzia; Trapani, Eliana; Delle Monache, Simona; Perrelli, Andrea; Fornelli, Claudia; Retta, Francesca; Cassoni, Paola; Talesa, Vincenzo Nicola; Retta, Saverio Francesco*
Autori di Ateneo:
CASSONI Paola
FORNELLI Claudia
RETTA Saverio Francesco
Link alla scheda completa:
https://iris.unito.it/handle/2318/1663007
Link al Full Text:
https://iris.unito.it/retrieve/handle/2318/1663007/398003/Data%20in%20support%20of%20sustained%20upregulation%20of%20adaptive%20redox%20homeostasis%20mechanisms%20caused%20by%20KRIT1%20loss-of-function.pdf
Pubblicato in:
DATA IN BRIEF
Journal
  • Dati Generali

Dati Generali

URL

https://www.sciencedirect.com/science/article/pii/S2352340917307217?via%3Dihub; https://ac.els-cdn.com/S2352340917307217/1-s2.0-S2352340917307217-main.pdf?_tid=74f5101a-551c-4ae9-9844-a7f7649403d4&acdnat=1521589964_c64817615bd5a060fb4af363dea98f50; https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5832564/
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.6.1.0