Skip to Main Content (Press Enter)

Logo UNITO
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione

UNI-FIND
Logo UNITO

|

UNI-FIND

unito.it
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione
  1. Pubblicazioni

Deriving Symbolic Ordinary Differential Equations from Stochastic Symmetric Nets Without Unfolding

Contributo in Atti di convegno
Data di Pubblicazione:
2018
Abstract:
This paper concerns the quantitative evaluation of Stochastic Symmetric Nets (SSN) by means of a fluid approximation technique particularly suited to analyse systems with a huge state space. In particular a new efficient approach is proposed to derive the deterministic process approximating the original stochastic process through a system of Ordinary Differential Equations (ODE). The intrinsic symmetry of SSN models is exploited to significantly reduce the size of the ODE system while a symbolic calculus operating on the SSN arc functions is employed to derive such system efficiently, avoiding the complete unfolding of the SSN model into a Stochastic Petri Net (SPN).
Tipologia CRIS:
04A-Conference paper in volume
Elenco autori:
Marco Beccuti, Lorenzo Capra, Massimiliano De Pierro, Giuliana Franceschinis, Simone Pernice
Autori di Ateneo:
BECCUTI Marco
DE PIERRO Massimiliano
PERNICE Simone
Link alla scheda completa:
https://iris.unito.it/handle/2318/1690344
Titolo del libro:
Computer Performance Engineering
Pubblicato in:
LECTURE NOTES IN COMPUTER SCIENCE
Journal
LECTURE NOTES IN COMPUTER SCIENCE
Series
  • Dati Generali

Dati Generali

URL

https://link.springer.com/chapter/10.1007%2F978-3-030-02227-3_3
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.5.3.0