Skip to Main Content (Press Enter)

Logo UNITO
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione

UNI-FIND
Logo UNITO

|

UNI-FIND

unito.it
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione
  1. Pubblicazioni

Unsupervised and supervised text similarity systems for automated identification of national implementing measures of European directives

Articolo
Data di Pubblicazione:
2019
Abstract:
The automated identification of national implementations (NIMs) of European directives by text similarity techniques has shown promising preliminary results. Previous works have proposed and utilized unsupervised lexical and semantic similarity techniques based on vector space models, latent semantic analysis and topic models. However, these techniques were evaluated on a small multilingual corpus of directives and NIMs. In this paper, we utilize word and paragraph embedding models learned by shallow neural networks from a multilingual legal corpus of European directives and national legislation (from Ireland, Luxembourg and Italy) to develop unsupervised semantic similarity systems to identify transpositions. We evaluate these models and compare their results with the previous unsupervised methods on a multilingual test corpus of 43 Directives and their corresponding NIMs. We also develop supervised machine learning models to identify transpositions and compare their performance with different feature sets.
Tipologia CRIS:
03A-Articolo su Rivista
Keywords:
Machine learning; Text similarity; Transposition
Elenco autori:
Nanda R.; Siragusa G.; Di Caro L.; Boella G.; Grossio L.; Gerbaudo M.; Costamagna F.
Autori di Ateneo:
BOELLA Guido
COSTAMAGNA Francesco
DI CARO Luigi
GROSSIO Lorenzo
SIRAGUSA GIOVANNI
Link alla scheda completa:
https://iris.unito.it/handle/2318/1710660
Link al Full Text:
https://iris.unito.it/retrieve/handle/2318/1710660/810118/preprint_AILaw_Nanda.pdf
Pubblicato in:
ARTIFICIAL INTELLIGENCE AND LAW
Journal
  • Dati Generali

Dati Generali

URL

www.kluweronline.com/issn/0924-8463/
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.5.0.1