Skip to Main Content (Press Enter)

Logo UNITO
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione

UNI-FIND
Logo UNITO

|

UNI-FIND

unito.it
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione
  1. Pubblicazioni

Deep Triplet-Driven Semi-supervised Embedding Clustering

Contributo in Atti di convegno
Data di Pubblicazione:
2019
Abstract:
In most real world scenarios, experts dispose of limited background knowledge that they can exploit for guiding the analysis process. In this context, semi-supervised clustering can be employed to leverage such knowledge and enable the discovery of clusters that meet the analysts’ expectations. To this end, we propose a semi-supervised deep embedding clustering algorithm that exploits triplet constraints as background knowledge within the whole learning process. The latter consists in a two-stage approach where, initially, a low-dimensional data embedding is computed and, successively, cluster assignment is refined via the introduction of an auxiliary target distribution. Our algorithm is evaluated on real-world benchmarks in comparison with state-of-the-art unsupervised and semi-supervised clustering methods. Experimental results highlight the quality of the proposed framework as well as the added value of the new learnt data representation.
Tipologia CRIS:
04A-Conference paper in volume
Keywords:
Deep learning, Constrained clustering, Triplet constraints
Elenco autori:
Ienco, Dino; Pensa, Ruggero G.
Autori di Ateneo:
PENSA Ruggero Gaetano
Link alla scheda completa:
https://iris.unito.it/handle/2318/1714021
Link al Full Text:
https://iris.unito.it/retrieve/handle/2318/1714021/538297/ds2019_ienco_draft.pdf
Titolo del libro:
Discovery Science. DS 2019.
Pubblicato in:
LECTURE NOTES IN ARTIFICIAL INTELLIGENCE
Journal
LECTURE NOTES IN ARTIFICIAL INTELLIGENCE
Series
  • Dati Generali

Dati Generali

URL

https://link.springer.com/chapter/10.1007/978-3-030-33778-0_18
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.6.1.0