Skip to Main Content (Press Enter)

Logo UNITO
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione

UNI-FIND
Logo UNITO

|

UNI-FIND

unito.it
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione
  1. Pubblicazioni

Misogyny Detection in Twitter: a Multilingual and Cross-Domain Study

Articolo
Data di Pubblicazione:
2020
Abstract:
The freedom of expression given by social media has a dark side: the growing proliferation of abusive contents on these platforms. Misogynistic speech is a kind of abusive language, which can be simplified as hate speech targeting women, and it is becoming a more and more relevant issue in recent years. AMI IberEval 2018 and AMI EVALITA 2018 were two shared tasks which mainly focused on tackling the problem of misogyny in Twitter, in three different languages, namely English, Italian, and Spanish. In this paper, we present an in-depth study on the phenomena of misogyny in those three languages, by focusing on three main objectives. Firstly, we investigate the most important features to detect misogyny and the issues which contribute to the difficulty of misogyny detection, by proposing a novel system and conducting a broad evaluation on this task. Secondly, we study the relationship between misogyny and other abusive language phenomena, by conducting a series of cross-domain classification experiments. Finally, we explore the feasibility of detecting misogyny in a multilingual environment, by carrying out cross-lingual classification experiments. Our system succeeded to outperform all state of the art systems in all benchmark AMI datasets both subtask A and subtask B. Moreover, intriguing insights emerged from error analysis, in particular about the interaction between different but related abusive phenomena. Based on our cross-domain experiment, we conclude that misogyny is quite a specific kind of abusive language, while we experimentally found that it is different from sexism. Lastly, our cross-lingual experiments show promising results. Our proposed joint-learning architecture obtained a robust performance across languages, worth to be explored in further investigation.
Tipologia CRIS:
03A-Articolo su Rivista
Keywords:
Abusive language online; Automatic misogyny identification; Cross-domain classification; Cross-lingual classification; Social media
Elenco autori:
Pamungkas E.W.; Basile V.; Patti V.
Autori di Ateneo:
BASILE Valerio
PATTI Viviana
Link alla scheda completa:
https://iris.unito.it/handle/2318/1757915
Link al Full Text:
https://iris.unito.it/retrieve/handle/2318/1757915/1573524/Misogyny%20Detection%20in%20Twitter_%20a%20Multilingual%20and%20Cross-Domain%20Study.pdf
Pubblicato in:
INFORMATION PROCESSING & MANAGEMENT
Journal
  • Dati Generali
  • Aree Di Ricerca

Dati Generali

URL

https://www.sciencedirect.com/science/article/pii/S0306457320308554

Aree Di Ricerca

Settori (12)


PE6_7 - Artificial intelligence, intelligent systems, natural language processing - (2024)

CIBO, AGRICOLTURA e ALLEVAMENTI - Farmacologia Veterinaria

CULTURA, ARTE e CREATIVITA' - Culture moderne

INFORMATICA, AUTOMAZIONE e INTELLIGENZA ARTIFICIALE - Digitalizzazione della Cultura e della Creatività

INFORMATICA, AUTOMAZIONE e INTELLIGENZA ARTIFICIALE - Digitalizzazione della Società e della Pubblica Amministrazione

INFORMATICA, AUTOMAZIONE e INTELLIGENZA ARTIFICIALE - Salute e Informatica

LINGUE e LETTERATURA - Anglistica e angloamericanistica

LINGUE e LETTERATURA - Francesistica

PIANETA TERRA, AMBIENTE, CLIMA, ENERGIA e SOSTENIBILITA' - Diritto dell'Ambiente

PIANETA TERRA, AMBIENTE, CLIMA, ENERGIA e SOSTENIBILITA' - Informatica e Ambiente

SCIENZE MATEMATICHE, CHIMICHE, FISICHE - Fisica delle Particelle e dei Nuclei

SCIENZE MATEMATICHE, CHIMICHE, FISICHE - Laboratori innovativi, strumentazione e modellizzazione fisica
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.4.2.0