Skip to Main Content (Press Enter)

Logo UNITO
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione

UNI-FIND
Logo UNITO

|

UNI-FIND

unito.it
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione
  1. Pubblicazioni

An optimal Gauss–Markov approximation for a process with stochastic drift and applications

Articolo
Data di Pubblicazione:
2020
Abstract:
We consider a linear stochastic differential equation with stochastic drift. We study the problem of approximating the solution of such equation through an Ornstein–Uhlenbeck type process, by using direct methods of calculus of variations. We show that general power cost functionals satisfy the conditions for existence and uniqueness of the approximation. We provide some examples of general interest and we give bounds on the goodness of the corresponding approximations. Finally, we focus on a model of a neuron embedded in a simple network and we study the approximation of its activity, by exploiting the aforementioned results.
Tipologia CRIS:
03A-Articolo su Rivista
Keywords:
Neuronal models; Optimality conditions; Shot noise; Stochastic differential equations
Elenco autori:
Ascione G.; D'Onofrio G.; Kostal L.; Pirozzi E.
Link alla scheda completa:
https://iris.unito.it/handle/2318/1760655
Pubblicato in:
STOCHASTIC PROCESSES AND THEIR APPLICATIONS
Journal
  • Dati Generali

Dati Generali

URL

https://www.sciencedirect.com/science/article/abs/pii/S0304414920302908?via=ihub
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.5.0.1