Data di Pubblicazione:
2021
Abstract:
Let q be an odd prime power and n an integer. Let ℓ∈Fqjavax.xml.bind.JAXBElement@3f28d4ca[x] be a q-linearized t-scattered polynomial of linearized degree r. Let d=max{t,r} be an odd prime number. In this paper we show that under these assumptions it follows that ℓ=x. Our technique involves a Galois theoretical characterization of t-scattered polynomials combined with the classification of transitive subgroups of the general linear group over the finite field Fq.
Tipologia CRIS:
03A-Articolo su Rivista
Keywords:
Chebotarev density theorem; Exceptionality; Finite fields; Galois theory; Rank metric codes; Scattered linear sets; Scattered polynomials
Elenco autori:
Ferraguti A.; Micheli G.
Link alla scheda completa:
Pubblicato in: