WRF (Weather Research and Forecasting) model and radiative methods for cloud top height retrieval along the EUSO-SPB1 trajectory
Contributo in Atti di convegno
Data di Pubblicazione:
2019
Abstract:
The Extreme Universe Space Observatory-Super Pressure Balloon (EUSO-SPB1) is a pathfinder of the JEM-EUSO program, which aims to observe Ultra High Energy Cosmic Rays (UHECRs) from near-space. It was launched from Wanaka (New Zealand) on April 25, 2017 UTC and
was terminated after twelve days of flight in the South Pacific Ocean. A good knowledge of the atmospheric conditions and cloud properties, such as the Cloud Top Height (CTH), is fundamental to correctly reconstruct the energy and geometry of air showers produced by cosmic rays passing through the atmosphere. One of the methods used to retrieve the CTH is based on Numerical Weather Prediction models. In this work, we consider in particular the Weather Research and Forecasting (WRF) model. A first model test is made on the WRF parametrizations for elementary processes, applying a top-bottom directed algorithm based on two quantities: cloud fraction and
optical depth. The validated procedure is then applied to the SPB1 trajectory, retrieving the CTH every ten minutes for the days of the flight. A comparison is made with the analyzed data taken from MODerate resolution Imaging Spectroradiometer (MODIS) satellite images, once per day, to understand the reliability of the method. Another way to retrieve the CTH is the so-called radiative method, that allows to calculate the Cloud Top Temperature (CTT). A vertical temperature profile is needed to transform the CTT into CTH. When radiosoundings are not available, WRF can provide vertical temperature profiles. The conversion from the CTT to the CTH is then made.
Tipologia CRIS:
04B-Conference paper in rivista
Elenco autori:
S. Monte, C. Vigorito, M. Bertaina, S. Ferrarese, K. Shinozaki, S.Briz
Link alla scheda completa:
Link al Full Text:
Pubblicato in: