Extended field-of-view ultrathin microendoscopes for high-resolution two-photon imaging with minimal invasiveness
Articolo
Data di Pubblicazione:
2020
Abstract:
Imaging neuronal activity with high and homogeneous spatial resolution across the field-of-view (FOV) and limited invasiveness in deep brain regions is fundamental for the progress of neuroscience, yet is a major technical challenge. We achieved this goal by correcting optical aberrations in gradient index lens-based ultrathin (≤ 500 m) microendoscopes using aspheric microlenses generated through 3D-microprinting. Corrected microendoscopes had extended FOV (eFOV) with homogeneous spatial resolution for two-photon fluorescence imaging and required no modification of the optical set-up. Synthetic calcium imaging data showed that, compared to uncorrected endoscopes, eFOV-microendoscopes led to improved signal-to-noise ratio and more precise evaluation of correlated neuronal activity. We experimentally validated these predictions in awake head-fixed mice. Moreover, using eFOV-microendoscopes we demonstrated cell-specific encoding of behavioral state-dependent information in distributed functional subnetworks in a primary somatosensory thalamic nucleus. eFOV-microendoscopes are, therefore, small-cross-section ready-to-use tools for deep two-photon functional imaging with unprecedentedly high and homogeneous spatial resolution.
Tipologia CRIS:
03A-Articolo su Rivista
Keywords:
mouse; neuroscience
Elenco autori:
Antonini, Andrea; Sattin, Andrea; Moroni, Monica; Bovetti, Serena; Moretti, Claudio; Succol, Francesca; Forli, Angelo; Vecchia, Dania; Rajamanickam, Vijayakumar P; Bertoncini, Andrea; Panzeri, Stefano; Liberale, Carlo; Fellin, Tommaso
Link alla scheda completa:
Link al Full Text:
Pubblicato in: