Properties of iron-modified-by-silver supported on mordenite as catalysts for nox reduction
Articolo
Data di Pubblicazione:
2020
Abstract:
A series of mono and bimetallic catalysts based on a Fe-Ag mixture deposited on mordenite was prepared by ion-exchange and evaluated in the catalytic activity test of the de-NOx reaction in the presence of CO/C3H6. The activity results showed that the most active samples were the Fe-containing ones, and at high temperatures, a co-promoter effect of Ag on the activity of Fe catalysts was also observed. The influence of the order of cation deposition on catalysts formation and their physicochemical properties was studied by FTIR (Fourier Transform Infrared Spectroscopy) of adsorbed NO, XANES (X-ray Absorption Near-Edge Structure), and EXAFS (Extended X-ray Absorption Fine Structure) and discussed in terms of the state of iron. Results of Fe K-edge XANES oscillations showed that, in FeMOR catalysts, iron was present in a disordered state as Fe3+ and Fe2+. In FeAgMOR, the prevailing species was Fe3+, while in the AgFeMOR catalyst, the state of iron was intermediate or mixed between FeMOR and FeAgMOR. The Fe K-edge EXAFS results were characteristic of a disordered phase, the first coordination sphere being asymmetric with two different Fe-O distances. In FeAgMOR and AgFeMOR, coordination of Fe-O was similar to Fe2O3 with a few amount of Fe2+ species. We may conclude that, in the bimetallic FeAgMOR and AgFeMOR samples, a certain amount of tetrahedral Al3+ ions in the mordenite framework is replaced by Fe3+ ions, confirming the previous reports that these species are active sites for the de-NOx reaction. Based on the thermodynamic analysis and experimental data, also, it was confirmed that the order of deposition of the components influenced the mechanism of active sites’ formation during the two steps ion-exchange synthesis.
Tipologia CRIS:
03A-Articolo su Rivista
Keywords:
Bimetallic; De-NO; x; Deposition order; Ion exchange; Iron; Mordenite; Silver
Elenco autori:
Sanchez-Lopez P.; Kotolevich Y.; Khramov E.; Chowdari R.K.; Estrada M.A.; Berlier G.; Zubavichus Y.; Fuentes S.; Petranovskii V.; Chavez-Rivas F.
Link alla scheda completa:
Link al Full Text:
Pubblicato in: