Skip to Main Content (Press Enter)

Logo UNITO
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione

UNI-FIND
Logo UNITO

|

UNI-FIND

unito.it
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione
  1. Pubblicazioni

Petri Nets Validation of Markovian Models of Emergency Department Arrivals

Contributo in Atti di convegno
Data di Pubblicazione:
2020
Abstract:
Modeling of hospital’s Emergency Departments (ED) is vital for optimisation of health services offered to patients that shows up at an ED requiring treatments with different level of emergency. In this paper we present a modeling study whose contribution is twofold: first, based on a dataset relative to the ED of an Italian hospital, we derive different kinds of Markovian models capable to reproduce, at different extents, the statistical character of dataset arrivals; second, we validate the derived arrivals model by interfacing it with a Petri net model of the services an ED patient undergoes. The empirical assessment of a few key performance indicators allowed us to validate some of the derived arrival process model, thus confirming that they can be used for predicting the performance of an ED.
Tipologia CRIS:
04A-Conference paper in volume
Keywords:
ED arrival process; Markovian models; Stochastic petri nets
Elenco autori:
Ballarini P.; Duma D.; Horvath A.; Aringhieri R.
Autori di Ateneo:
ARINGHIERI Roberto
HORVATH Andras
Link alla scheda completa:
https://iris.unito.it/handle/2318/1766377
Link al Full Text:
https://iris.unito.it/retrieve/handle/2318/1766377/691802/2020-PetriNetsValidationOfMarkovianModelsOfEmergencyDepartmentArrivals-PostPrint.pdf
Titolo del libro:
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Pubblicato in:
LECTURE NOTES IN ARTIFICIAL INTELLIGENCE
Journal
LECTURE NOTES IN ARTIFICIAL INTELLIGENCE
Series
Progetto:
ARINGHIERI R. - Progetto Bando Galileo 2016-2017 dal titolo "Improving the Emergency Care System Equity (PRECiSE)" (G16-42)
  • Dati Generali
  • Aree Di Ricerca

Dati Generali

URL

https://link.springer.com/chapter/10.1007/978-3-030-51831-8_11; https://rdcu.be/cdqKl

Aree Di Ricerca

Settori (9)


PE6_12 - Scientific computing, simulation and modelling tools - (2022)

CIBO, AGRICOLTURA e ALLEVAMENTI - Farmacologia Veterinaria

CULTURA, ARTE e CREATIVITA' - Culture moderne

INFORMATICA, AUTOMAZIONE e INTELLIGENZA ARTIFICIALE - Digitalizzazione della Società e della Pubblica Amministrazione

INFORMATICA, AUTOMAZIONE e INTELLIGENZA ARTIFICIALE - Industria X.0

PIANETA TERRA, AMBIENTE, CLIMA, ENERGIA e SOSTENIBILITA' - Diritto dell'Ambiente

PIANETA TERRA, AMBIENTE, CLIMA, ENERGIA e SOSTENIBILITA' - Informatica e Ambiente

SCIENZE MATEMATICHE, CHIMICHE, FISICHE - Fisica delle Particelle e dei Nuclei

SCIENZE MATEMATICHE, CHIMICHE, FISICHE - Laboratori innovativi, strumentazione e modellizzazione fisica
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.6.1.0