Skip to Main Content (Press Enter)

Logo UNITO
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione

UNI-FIND
Logo UNITO

|

UNI-FIND

unito.it
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione
  1. Pubblicazioni

A parameter-less algorithm for tensor co-clustering

Articolo
Data di Pubblicazione:
2023
Abstract:
The majority of the data produced by human activities and modern cyber-physical systems involve complex relations among their features. Such relations can be often represented by means of tensors, which can be viewed as generalization of matrices and, as such, can be analyzed by using higher-order extensions of existing machine learning methods, such as clustering and co-clustering. Tensor co-clustering, in particular, has been proven useful in many applications, due to its ability of coping with n-modal data and sparsity. However, setting up a co-clustering algorithm properly requires the specification of the desired number of clusters for each mode as input parameters. This choice is already difficult in relatively easy settings, like flat clustering on data matrices, but on tensors it could be even more frustrating. To face this issue, we propose a new tensor co-clustering algorithm that does not require the number of desired co-clusters as input, as it optimizes an objective function based on a measure of association across discrete random variables (called Goodman and Kruskal’s τ) that is not affected by their cardinality. We introduce different optimization schemes and show their theoretical and empirical convergence properties. Additionally, we show the effectiveness of our algorithm on both synthetic and real-world datasets, also in comparison with state-of-the-art co-clustering methods based on tensor factorization and latent block models.
Tipologia CRIS:
03A-Articolo su Rivista
Keywords:
Clustering, Higher-order data, Unsupervised learning
Elenco autori:
Battaglia, Elena; Pensa, Ruggero G.
Autori di Ateneo:
PENSA Ruggero Gaetano
Link alla scheda completa:
https://iris.unito.it/handle/2318/1790459
Link al Full Text:
https://iris.unito.it/retrieve/handle/2318/1790459/1083496/ml2021_printed.pdf
Pubblicato in:
MACHINE LEARNING
Journal
  • Dati Generali
  • Aree Di Ricerca

Dati Generali

URL

https://link.springer.com/article/10.1007/s10994-021-06002-w

Aree Di Ricerca

Settori (12)


PE6_11 - Machine learning, statistical data processing and applications using signal processing (e.g. speech, image, video) - (2024)

CIBO, AGRICOLTURA e ALLEVAMENTI - Farmacologia Veterinaria

CULTURA, ARTE e CREATIVITA' - Culture moderne

INFORMATICA, AUTOMAZIONE e INTELLIGENZA ARTIFICIALE - Digitalizzazione della Cultura e della Creatività

INFORMATICA, AUTOMAZIONE e INTELLIGENZA ARTIFICIALE - Digitalizzazione della Società e della Pubblica Amministrazione

INFORMATICA, AUTOMAZIONE e INTELLIGENZA ARTIFICIALE - Industria X.0

INFORMATICA, AUTOMAZIONE e INTELLIGENZA ARTIFICIALE - Salute e Informatica

LINGUE e LETTERATURA - Linguistica

PIANETA TERRA, AMBIENTE, CLIMA, ENERGIA e SOSTENIBILITA' - Diritto dell'Ambiente

PIANETA TERRA, AMBIENTE, CLIMA, ENERGIA e SOSTENIBILITA' - Informatica e Ambiente

SCIENZE DELLA VITA e FARMACOLOGIA - Tecnologie Farmaceutiche e Cosmetiche

SCIENZE MATEMATICHE, CHIMICHE, FISICHE - Teorie e modelli Matematici
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.6.1.0