Data di Pubblicazione:
2018
Abstract:
We classify coherent modules on k[x,y] of length at most 4 and supported at the origin. We compare our calculation with the motivic class of the moduli stack parametrizing such modules, extracted from the Feit–Fine formula. We observe that the natural torus action on this stack has finitely many fixed points, corresponding to connected skew Ferrers diagrams.
Tipologia CRIS:
03A-Articolo su Rivista
Keywords:
Coherent sheaves; Finite length modules; Grothendieck ring of varieties; Hilbert scheme of points; Torus actions
Elenco autori:
Moschetti R.; Ricolfi A.T.
Link alla scheda completa:
Pubblicato in: