Skip to Main Content (Press Enter)

Logo UNITO
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione

UNI-FIND
Logo UNITO

|

UNI-FIND

unito.it
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione
  1. Pubblicazioni

Effect of polymerization time on the binding properties of ciprofloxacin-imprinted nanoMIPs prepared by solid phase synthesis

Articolo
Data di Pubblicazione:
2021
Abstract:
An innovative approach to imprinted nanoparticles (nanoMIPs) is represented by the solid-phase synthesis. Since the polymeric chains grow over time and rearrange themselves around the template, the binding properties of nanoMIPs could depend on the polymerization time. Here we present an explorative study about the effect of different polymerization times on the binding properties of ciprofloxacin-imprinted nanoMIPs. The binding properties towards ciprofloxacin were studied by measuring the binding affinity constants (Keq) and the kinetic rate constants (kd, ka). Furthermore, selectivity and non-specific binding were valued by measuring the rebinding of levofloxacin onto ciprofloxacin-imprinted nanoMIPs, and ciprofloxacin onto diclofenac-imprinted nanoMIPs, respectively. The results show that different polymerization times produces nanoMIPs with different binding properties: short polymerization times (15 min) produced nanoMIPs with high binding affinity but low selectivity (Keq > 107 mol L-1, alpha≈1), medium polymerization times (30 min – 2 h) produced nanoMIPs with high binding affinity and selectivity (Keq ≥ 106 mol L-1, alpha<1), and long polymerization times (>2 h) produced nanoMIPs with low binding affinity, fast dissociation kinetics and low selectivity (Keq ≤ 106 mol L-1, kdis> 0.2 min-1, alpha≈1). The results can be explained as the combined effect of rearrangement and progressive stiffening of the polymer chains around the template molecules
Tipologia CRIS:
03A-Articolo su Rivista
Elenco autori:
M.Charello; L.Anfossi; S.Cavalera; F.Di Nardo; F.Artusio; R.Pisano; C.Baggiani
Autori di Ateneo:
ANFOSSI Laura
BAGGIANI Claudio
CAVALERA Simone
CHIARELLO Matteo
DI NARDO Fabio
Link alla scheda completa:
https://iris.unito.it/handle/2318/1796018
Link al Full Text:
https://iris.unito.it/retrieve/handle/2318/1796018/785848/pol21_13_2656.pdf
Pubblicato in:
POLYMERS
Journal
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.5.3.0