Skip to Main Content (Press Enter)

Logo UNITO
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione

UNI-FIND
Logo UNITO

|

UNI-FIND

unito.it
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione
  1. Pubblicazioni

Regularized variational principles for the perturbed Kepler problem

Articolo
Data di Pubblicazione:
2021
Abstract:
The goal of the paper is to develop a method that will combine the use of variational techniques with regularization methods in order to study existence and multiplicity results for the periodic and the Dirichlet problem associated to the perturbed Kepler system [ ddot x = -rac{x}{|x|^3} + p(t), quad x in mathbb{R}^d, ] where $dgeq 1$, and $p:mathbb{R} omathbb{R}^d$ is smooth and $T$-periodic, $T>0$. The existence of critical points for the action functional associated to the problem is proved via a non-local change of variables inspired by Levi-Civita and Kustaanheimo-Stiefel techniques. As an application we will prove that the perturbed Kepler problem has infinitely many generalized $T$-periodic solutions for $d=2$ and $d=3$, without any symmetry assumptions on $p$.
Tipologia CRIS:
03A-Articolo su Rivista
Keywords:
Mathematics - Classical Analysis and ODEs; Mathematics - Classical Analysis and ODEs; Mathematics - Analysis of PDEs; Mathematics - Dynamical Systems
Elenco autori:
Vivina Laura Barutello; Rafael Ortega; Gianmaria Verzini
Autori di Ateneo:
BARUTELLO Vivina Laura
Link alla scheda completa:
https://iris.unito.it/handle/2318/1797092
Pubblicato in:
ADVANCES IN MATHEMATICS
Journal
  • Dati Generali

Dati Generali

URL

http://arxiv.org/abs/2003.09383v1
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.5.2.0