Skip to Main Content (Press Enter)

Logo UNITO
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione

UNI-FIND
Logo UNITO

|

UNI-FIND

unito.it
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione
  1. Pubblicazioni

HEMP: High-order entropy minimization for neural network compression

Articolo
Data di Pubblicazione:
2021
Abstract:
We formulate the entropy of a quantized artificial neural network as a differentiable function that can be plugged as a regularization term into the cost function minimized by gradient descent. Our formulation scales efficiently beyond the first order and is agnostic of the quantization scheme. The network can then be trained to minimize the entropy of the quantized parameters, so that they can be optimally compressed via entropy coding. We experiment with our entropy formulation at quantizing and compressing well-known network architectures over multiple datasets. Our approach compares favorably over similar methods, enjoying the benefits of higher order entropy estimate, showing flexibility towards non-uniform quantization (we use Lloyd-max quantization), scalability towards any entropy order to be minimized and efficiency in terms of compression. We show that HEMP is able to work in synergy with other approaches aiming at pruning or quantizing the model itself, delivering significant benefits in terms of storage size compressibility without harming the model's performance.
Tipologia CRIS:
03A-Articolo su Rivista
Keywords:
Compression; Deep learning; Entropy; Neural networks; Regularization
Elenco autori:
Tartaglione E.; Lathuiliere S.; Fiandrotti A.; Cagnazzo M.; Grangetto M.
Autori di Ateneo:
FIANDROTTI Attilio
GRANGETTO Marco
Link alla scheda completa:
https://iris.unito.it/handle/2318/1798403
Link al Full Text:
https://iris.unito.it/retrieve/handle/2318/1798403/790262/Neurocomputing_HEMP.pdf
Pubblicato in:
NEUROCOMPUTING
Journal
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.6.1.0