Comparative Evaluation of Different Chitosan Species and Derivatives as Candidate Biomaterials for Oxygen-Loaded Nanodroplet Formulations to Treat Chronic Wounds
Articolo
Data di Pubblicazione:
2021
Abstract:
Persistent hypoxia is a main clinical feature of chronic wounds. Intriguingly, oxygen-loaded nanodroplets (OLNDs), filled with oxygen-solving 2H,3H-decafluoropentane and shelled with polysaccharides, have been proposed as a promising tool to counteract hypoxia by releasing a clinically relevant oxygen amount in a time-sustained manner. Here, four different types of chitosan (low or medium weight (LW or MW), glycol-(G-), and methylglycol-(MG-) chitosan) were compared as candidate biopolymers for shell manufacturing. The aim of the work was to design OLND formulations with optimized physico-chemical characteristics, efficacy in oxygen release, and biocompatibility. All OLND formulations displayed spherical morphology, cationic surfaces, ≤500 nm diameters (with LW chitosan-shelled OLNDs being the smallest), high stability, good oxygen encapsulation efficiency, and prolonged oxygen release kinetics. Upon cellular internalization, LW, MW, and G-chitosan-shelled nanodroplets did not significantly affect the viability, health, or metabolic activity of human keratinocytes (HaCaT cell line). On the contrary, MG-chitosan-shelled nanodroplets showed very poor biocompatibility. Combining the physico-chemical and the biological results obtained, LW chitosan emerges as the best candidate biopolymer for future OLND application as a skin device to treat chronic wounds.
Tipologia CRIS:
03A-Articolo su Rivista
Keywords:
chitosan; chitosan-derivatives; chronic wound; human keratinocytes; nanodroplets; oxygen; Biocompatible Materials; Cell Hypoxia; Cell Survival; Chitosan; HaCaT Cells; Humans; Keratinocytes; Molecular Weight; Nanoparticles; Oxygen; Particle Size; Wounds and Injuries
Elenco autori:
Argenziano M.; Bressan B.; Luganini A.; Finesso N.; Genova T.; Troia A.; Giribaldi G.; Banche G.; Mandras N.; Cuffini A.M.; Cavalli R.; Prato M.
Link alla scheda completa:
Link al Full Text:
Pubblicato in: