Skip to Main Content (Press Enter)

Logo UNITO
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione

UNI-FIND
Logo UNITO

|

UNI-FIND

unito.it
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione
  1. Pubblicazioni

Revisiting the Extended X-ray Absorption Fine Structure Fitting Procedure through a Machine Learning-Based Approach

Articolo
Data di Pubblicazione:
2021
Abstract:
A novel approach for the analysis of extended X-ray absorption fine structure (EXAFS) spectra is developed exploiting an inverse machine learning-based algorithm. Through this approach, it is possible to explore and account for, in a precise way, the nonlinear geometry dependence of the photoelectron backscattering phases and amplitudes of single and multiple scattering paths. In addition, the determined parameters are directly related to the 3D atomic structure, without the need to use complex parametrization as in the classical fitting approach. The applicability of the approach, its potential and the advantages over the classical fit were demonstrated by fitting the EXAFS data of two molecular systems, namely, the KAu (CN)2 and the [RuCl2(CO)3]2 complexes.
Tipologia CRIS:
03A-Articolo su Rivista
Elenco autori:
Martini A.; Bugaev A.L.; Guda S.A.; Guda A.A.; Priola E.; Borfecchia E.; Smolders S.; Janssens K.; De Vos D.; Soldatov A.V.
Autori di Ateneo:
BORFECCHIA Elisa
PRIOLA Emanuele
Link alla scheda completa:
https://iris.unito.it/handle/2318/1836572
Link al Full Text:
https://iris.unito.it/retrieve/handle/2318/1836572/926240/21_Martini_JPhysChemC_ML-EXAFS_OA.pdf
Pubblicato in:
JOURNAL OF PHYSICAL CHEMISTRY. A, MOLECULES, SPECTROSCOPY, KINETICS, ENVIRONMENT, & GENERAL THEORY
Journal
  • Dati Generali

Dati Generali

URL

https://pubs.acs.org/doi/full/10.1021/acs.jpca.1c03746
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.5.0.1