Data di Pubblicazione:
2022
Abstract:
We compare a particular selection of approximate solutions of the Riemann problem in the context of ideal relativistic magnetohydrodynamics. In particular, we focus on Riemann solvers not requiring a full eigenvector structure. Such solvers recover the solution of the Riemann problem by solving a simplified or reduced set of jump conditions, whose level of complexity depends on the intermediate modes that are included. Five different approaches - namely the HLL, HLLC, HLLD, HLLEM, and GFORCE schemes - are compared in terms of accuracy and robustness against one - and multidimensional standard numerical benchmarks. Our results demonstrate that - for weak or moderate magnetizations - the HLLD Riemann solver yields the most accurate results, followed by HLLC solver(s). The GFORCE approach provides a valid alternative to the HLL solver being less dissipative and equally robust for strongly magnetized environments. Finally, our tests show that the HLLEM Riemann solver is not cost-effective in improving the accuracy of the solution and reducing the numerical dissipation.
Tipologia CRIS:
03A-Articolo su Rivista
Keywords:
MHD; relativistic processes; shock waves; methods: numerical
Elenco autori:
Mattia, G; Mignone, A
Link alla scheda completa:
Link al Full Text:
Pubblicato in: