Skip to Main Content (Press Enter)

Logo UNITO
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione

UNI-FIND
Logo UNITO

|

UNI-FIND

unito.it
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione
  1. Pubblicazioni

FXR agonist obeticholic acid reduces hepatic inflammation and fibrosis in a rat model of toxic cirrhosis

Articolo
Data di Pubblicazione:
2016
Abstract:
Hepatic inflammation drives hepatic stellate cells (HSC), resulting in liver fibrosis. The Farnesoid-X receptor (FXR) antagonizes inflammation through NF-κB inhibition. We investigated preventive and therapeutic effects of FXR agonist obeticholic acid (OCA) on hepatic inflammation and fibrosis in toxic cirrhotic rats. Cirrhosis was induced by thioacetamide (TAA) intoxication. OCA was given during or after intoxication with vehicle-treated rats as controls. At sacrifice, fibrosis, hemodynamic and biochemical parameters were assessed. HSC activation, cell turn-over, hepatic NF-κB activation, pro-inflammatory and pro-fibrotic cytokines were determined. The effect of OCA was further evaluated in isolated HSC, Kupffer cells, hepatocytes and liver sinusoidal endothelial cells (LSEC). OCA decreased hepatic inflammation and fibrogenesis during TAA-administration and reversed fibrosis in established cirrhosis. Portal pressure decreased through reduced intrahepatic vascular resistance. This was paralleled by decreased expression of pro-fibrotic cytokines (transforming growth-factor β, connective tissue growth factor, platelet-derived growth factor β-receptor) as well as markers of hepatic cell turn-over, by blunting effects of pro-inflammatory cytokines (e.g. monocyte chemo-attractant protein-1). In vitro, OCA inhibited both LSEC and Kupffer cell activation; while HSC remained unaffected. This related to NF-κB inhibition via up-regulated IκBα. In conclusion, OCA inhibits hepatic inflammation in toxic cirrhotic rats resulting in decreased HSC activation and fibrosis.
Tipologia CRIS:
03A-Articolo su Rivista
Keywords:
Animals; Apoptosis; Biomarkers; Cell Cycle; Cell Line; Cell Proliferation; Chenodeoxycholic Acid; Cytokines; Disease Models, Animal; Endothelial Cells; Hemodynamics; Hepatic Stellate Cells; Hepatocytes; Humans; Inflammation; Inflammation Mediators; Kupffer Cells; Lipopolysaccharides; Liver; Liver Cirrhosis; Male; Mice; NF-KappaB Inhibitor alpha; NF-kappa B; Portal Pressure; Rats, Wistar; Receptors, Cytoplasmic and Nuclear; Thioacetamide; Tumor Necrosis Factor-alpha; Up-Regulation; Vascular Resistance
Elenco autori:
Verbeke L.; Mannaerts I.; Schierwagen R.; Govaere O.; Klein S.; Vander Elst I.; Windmolders P.; Farre R.; Wenes M.; Mazzone M.; Nevens F.; Van Grunsven L.A.; Trebicka J.; Laleman W.
Link alla scheda completa:
https://iris.unito.it/handle/2318/1841740
Link al Full Text:
https://iris.unito.it/retrieve/handle/2318/1841740/940591/71.pdf
Pubblicato in:
SCIENTIFIC REPORTS
Journal
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.6.1.0