Skip to Main Content (Press Enter)

Logo UNITO
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione

UNI-FIND
Logo UNITO

|

UNI-FIND

unito.it
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione
  1. Pubblicazioni

L^p Boundedness and Compactness of Localization Operators

Articolo
Data di Pubblicazione:
2006
Abstract:
Localization operators are special anti-Wick operators, which arise in many fields of pure and applied mathematics. We study in this paper some properties of two-wavelet localization operators, $i.e.,$ operators which depend on a symbol and two different windows. In the case when the symbol $F$ belongs to $L^p(\mathbb{R}^{2n})$, we give an extension of some results proved by Boggiatto and Wong. More precisely, we obtain the boundedness and compactness of such operators on $L^q(\mathbb {R}^n),\,\frac{2p}{p+1}\leq q\leq\frac{2p}{p-1}$, for every $p\in[1,\infty]$.
Tipologia CRIS:
03A-Articolo su Rivista
Elenco autori:
P. Boggiatto; A. Oliaro; M.W. Wong
Autori di Ateneo:
BOGGIATTO Paolo
OLIARO Alessandro
Link alla scheda completa:
https://iris.unito.it/handle/2318/37367
Pubblicato in:
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS
Journal
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.6.1.0