Data di Pubblicazione:
2022
Abstract:
The Moderate Resolution Imaging Spectroradiometer (MODIS) is one of the most-used sensors for monitoring volcanoes and has been providing time series of Volcanic Radiative Power (VRP) on a global scale for two decades now. In this work, we analyzed the data provided by the Visible Infrared Imaging Radiometer Suite (VIIRS) by using the Middle Infrared Observation of Volcanic Activity (MIROVA) algorithm, originally developed to analyze MODIS data. The resulting VRP is compared with both the MIROVAMODIS data as well as with the Fire Radiative Power (FRP), distributed by the Fire Information for Resource Management System (FIRMS). The analysis on 9 active volcanoes reveals that VIIRS data analyzed with the MIROVA algorithm allows detecting ~60% more alerts than MODIS, due to a greater number of overpasses (+30%) and improved quality of VIIRS radiance data. Furthermore, the comparison with the nighttime FIRMS database indicates greater effectiveness of the MIROVA algorithm in detecting low-intensity (<10 MW) thermal anomalies (up to 90% more alerts than FIRMS). These results confirm the great potential of VIIRS to complement, replace and improve MODIS capabilities for global volcano thermal monitoring, because of the future end of Terra and Aqua Earth-observing satellite mission of National Aeronautics and Space Administration’s (NASA).
Tipologia CRIS:
03A-Articolo su Rivista
Keywords:
FIRMS; MIROVA; MODIS; Thermal remote sensing; VIIRS; Volcanic Radiative Power; Volcano monitoring; Environmental Monitoring; Radiometry; Satellite Imagery; Disasters; Fires
Elenco autori:
Campus A.; Laiolo M.; Massimetti F.; Coppola D.
Link alla scheda completa:
Link al Full Text:
Pubblicato in: