Skip to Main Content (Press Enter)

Logo UNITO
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione

UNI-FIND
Logo UNITO

|

UNI-FIND

unito.it
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione
  1. Pubblicazioni

Stochastic normalizing flows as non-equilibrium transformations

Articolo
Data di Pubblicazione:
2022
Abstract:
Normalizing flows are a class of deep generative models that provide a promising route to sample lattice field theories more efficiently than conventional Monte Carlo simulations. In this work we show that the theoretical framework of stochastic normalizing flows, in which neural-network layers are combined with Monte Carlo updates, is the same that underlies out-of-equilibrium simulations based on Jarzynski’s equality, which have been recently deployed to compute free-energy differences in lattice gauge theories. We lay out a strategy to optimize the efficiency of this extended class of generative models and present examples of applications.
Tipologia CRIS:
03A-Articolo su Rivista
Keywords:
Algorithms and Theoretical Developments; Lattice QCD; Other Lattice Field Theories;
Elenco autori:
Caselle, Michele; Cellini, Elia; Nada, Alessandro; Panero, Marco
Autori di Ateneo:
CASELLE Michele
CELLINI ELIA
NADA ALESSANDRO
PANERO Marco
Link alla scheda completa:
https://iris.unito.it/handle/2318/1868558
Link al Full Text:
https://iris.unito.it/retrieve/handle/2318/1868558/1016384/2201.08862_Caselle_et_al_Stochastic_normalizing_flows_as_non-equilibrium_transformations.pdf
Pubblicato in:
JOURNAL OF HIGH ENERGY PHYSICS
Journal
  • Dati Generali

Dati Generali

URL

https://link.springer.com/article/10.1007/JHEP07(2022)015
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.6.1.0