Targeted NGS Platforms for Genetic Screening and Gene Discovery in Primary Immunodeficiencies
Articolo
Data di Pubblicazione:
2019
Abstract:
Background: Primary Immunodeficiencies (PIDs) are a heterogeneous group of genetic immune disorders. While some PIDs can manifest with more than one phenotype, signs, and symptoms of various PIDs overlap considerably. Recently, novel defects in immune-related genes and additional variants in previously reported genes responsible for PIDs have been successfully identified by Next Generation Sequencing (NGS), allowing the recognition of a broad spectrum of disorders.Objective: To evaluate the strength and weakness of targeted NGS sequencing using custom-made Ion Torrent and Haloplex (Agilent) panels for diagnostics and research purposes.Methods: Five different panels including known and candidate genes were used to screen 105 patients with distinct PID features divided in three main PID categories: T cell defects, Humoral defects and Other PIDs. The Ion Torrent sequencing platform was used in 73 patients. Among these, 18 selected patients without a molecular diagnosis and 32 additional patients were analyzed by Haloplex enrichment technology.Results: The complementary use of the two custom-made targeted sequencing approaches allowed the identification of causative variants in 28.6% (n = 30) of patients. Twenty-two out of 73 (34.6%) patients were diagnosed by Ion Torrent. In this group 20 were included in the SCID/CID category. Eight out of 50 (16%) patients were diagnosed by Haloplex workflow. Ion Torrent method was highly successful for those cases with well-defined phenotypes for immunological and clinical presentation. The Haloplex approach was able to diagnose 4 SCID/CID patients and 4 additional patients with complex and extended phenotypes, embracing all three PID categories in which this approach was more efficient. Both technologies showed good gene coverage.Conclusions: NGS technology represents a powerful approach in the complex field of rare disorders but its different application should be weighted. A relatively small NGS target panel can be successfully applied for a robust diagnostic suspicion, while when the spectrum of clinical phenotypes overlaps more than one PID an in-depth NGS analysis is required, including also whole exome/genome sequencing to identify the causative gene.
Tipologia CRIS:
03A-Articolo su Rivista
Keywords:
Haloplex; Ion Torrent; Next Generation Sequencing; gene panels; primary immunodeficiencies; Adolescent; Child; Child, Preschool; Female; Genetic Predisposition to Disease; Genetic Testing; High-Throughput Nucleotide Sequencing; Humans; Infant; Infant, Newborn; Italy; Male; Phenotype; Primary Immunodeficiency Diseases
Elenco autori:
Cifaldi, Cristina; Brigida, Immacolata; Barzaghi, Federica; Zoccolillo, Matteo; Ferradini, Valentina; Petricone, Davide; Cicalese, Maria Pia; Lazarevic, Dejan; Cittaro, Davide; Omrani, Maryam; Attardi, Enrico; Conti, Francesca; Scarselli, Alessia; Chiriaco, Maria; Di Cesare, Silvia; Licciardi, Francesco; Davide, Montin; Ferrua, Francesca; Canessa, Clementina; Pignata, Claudio; Giliani, Silvia; Ferrari, Simona; Fousteri, Georgia; Barera, Graziano; Merli, Pietro; Palma, Paolo; Cesaro, Simone; Gattorno, Marco; Trizzino, Antonio; Moschese, Viviana; Chini, Loredana; Villa, Anna; Azzari, Chiara; Finocchi, Andrea; Locatelli, Franco; Rossi, Paolo; Sangiuolo, Federica; Aiuti, Alessandro; Cancrini, Caterina; Di Matteo, Gigliola
Link alla scheda completa:
Link al Full Text:
Pubblicato in: