Skip to Main Content (Press Enter)

Logo UNITO
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione

UNI-FIND
Logo UNITO

|

UNI-FIND

unito.it
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione
  1. Pubblicazioni

A numerical scheme for stochastic differential equations with distributional drift

Articolo
Data di Pubblicazione:
2022
Abstract:
In this paper we introduce a scheme for the numerical solution of one-dimensional stochastic differential equations (SDEs) whose drift belongs to a fractional Sobolev space of negative regularity (a subspace of Schwartz distributions). We obtain a convergence rate in a suitable L1-norm and, as a by-product, a convergence rate for a numerical scheme applied to SDEs with drift in Lp-spaces with p is an element of(1, infinity).(c) 2022 Elsevier B.V. All rights reserved.
Tipologia CRIS:
03A-Articolo su Rivista
Keywords:
Euler-Maruyama numerical scheme; Stochastic differential equations; Distributional drift; Rate of convergence; Haar and Faber functions; Fractional Sobolev spaces
Elenco autori:
Tiziano De Angelis; Maximilien Germain; Elena Issoglio
Autori di Ateneo:
DE ANGELIS Tiziano
ISSOGLIO Elena
Link alla scheda completa:
https://iris.unito.it/handle/2318/1879525
Link al Full Text:
https://iris.unito.it/retrieve/handle/2318/1879525/1056752/DeAngelis-Germain-Issoglio(2020)-revision%20SPA-final.pdf
Pubblicato in:
STOCHASTIC PROCESSES AND THEIR APPLICATIONS
Journal
  • Aree Di Ricerca

Aree Di Ricerca

Settori (3)


PE1_13 - Probability - (2024)

SCIENZE MATEMATICHE, CHIMICHE, FISICHE - Probabilità e Statistica

SOCIETA', POLITICA, DIRITTO e RELAZIONI INTERNAZIONALI - Statistica Applicata e Sociale
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.5.0.1