Data di Pubblicazione:
2022
Abstract:
In this paper we introduce a scheme for the numerical solution of one-dimensional stochastic differential equations (SDEs) whose drift belongs to a fractional Sobolev space of negative regularity (a subspace of Schwartz distributions). We obtain a convergence rate in a suitable L1-norm and, as a by-product, a convergence rate for a numerical scheme applied to SDEs with drift in Lp-spaces with p is an element of(1, infinity).(c) 2022 Elsevier B.V. All rights reserved.
Tipologia CRIS:
03A-Articolo su Rivista
Keywords:
Euler-Maruyama numerical scheme; Stochastic differential equations; Distributional drift; Rate of convergence; Haar and Faber functions; Fractional Sobolev spaces
Elenco autori:
Tiziano De Angelis; Maximilien Germain; Elena Issoglio
Link alla scheda completa:
Link al Full Text:
Pubblicato in: