Data di Pubblicazione:
2022
Abstract:
In this study, new photocurable biobased hydrogels deriving from chitosan and gelatin are designed and tested as sorbents for As(V) and Pb(II) removal from water. Those renewable materials were modified by a simple methacrylation reaction in order to make them light processable. The success of the reaction was evaluated by both H-1-NMR and FTIR spectroscopy. The reactivity of those formulations was subsequently investigated by a real-time photorheology test. The obtained hydrogels showed high swelling capability reaching up to 1200% in the case of methacrylated gelatin (GelMA). Subsequently, the Z-potential of the methacrylated chitosan (MCH) and GelMA was measured to correlate their electrostatic surface characteristics with their adsorption properties for As(V) and Pb(II). The pH of the solutions proved to have a huge influence on the As(V) and Pb(II) adsorption capacity of the obtained hydrogels. Furthermore, the effect of As(V) and Pb(II) initial concentration and contact time on the adsorption capability of MCH and GelMA were investigated and discussed. The MCH and GelMA hydrogels demonstrated to be promising sorbents for the removal of heavy metals from polluted waters.
Tipologia CRIS:
03A-Articolo su Rivista
Keywords:
UV-curing; chitosan; gelatin; heavy metals adsorption; hydrogels
Elenco autori:
Noè, Camilla; Zanon, Michael; Arencibia, Amaya; López-Muñoz, María-José; Fernández de Paz, Nieves; Calza, Paola; Sangermano, Marco
Link alla scheda completa:
Link al Full Text:
Pubblicato in: