Skip to Main Content (Press Enter)

Logo UNITO
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione

UNI-FIND
Logo UNITO

|

UNI-FIND

unito.it
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione
  1. Pubblicazioni

Towards Data Augmentation for DRS-to-Text Generation

Contributo in Atti di convegno
Data di Pubblicazione:
2022
Abstract:
The data augmentation approach is becoming very popular in Natural Language Generation (NLG). Different approaches have been utilized in NLP and NLG to augment data and increase training examples for the neural model. Yet no studies have performed augmentation on logical input i.e., Discourse Representation Structures (DRS). We present data augmentation in DRS i.e., DRS taken from the PMB corpus, for the DRS-to-Text generation task. We conducted our experiments on a standard bi-LSTM-based sequence-to-sequence model thus creating an end-to-end neural approach for generating English sentences from DRS. We evaluated the output generated from word-level and character-level decoders with the help of reference-based evaluation metrics like BLEU, ROUGE, METEOR, NIST, and CIDEr. The practical implementation of augmented DRS succeeded in achieving better results compared to DRS without augmentation. To prove the significance of our model, we conducted statistical significance tests i.e., the Shapiro-Wilk Test (to check data normality) and the Wilcoxon Test (to test model significance). Wilcoxon results states that our model is significantly better with the p-value = 2.37e-05 for Char-level model and p-value = 7.78e-07 for Word-level model.
Tipologia CRIS:
04A-Conference paper in volume
Keywords:
Bi-LSTM; Data Augmentation; DRS-to-Text Generation; Neural Network; Parallel Meaning Bank (PMB); Shapiro-Wilk Test; Statistical Significance Test; Wilcoxon Test
Elenco autori:
Amin M.S.; Mazzei A.; Anselma L.
Autori di Ateneo:
ANSELMA Luca
MAZZEI Alessandro
Link alla scheda completa:
https://iris.unito.it/handle/2318/1887628
Link al Full Text:
https://iris.unito.it/retrieve/handle/2318/1887628/1076844/paper14.pdf
Titolo del libro:
Proceedings of the Sixth Workshop on Natural Language for Artificial Intelligence (NL4AI 2022) co-located with 21th International Conference of the Italian Association for Artificial Intelligence (AI*IA 2022)
Pubblicato in:
CEUR WORKSHOP PROCEEDINGS
Journal
CEUR WORKSHOP PROCEEDINGS
Series
  • Dati Generali
  • Aree Di Ricerca

Dati Generali

URL

https://ceur-ws.org/Vol-3287/paper14.pdf

Aree Di Ricerca

Settori (12)


PE6_7 - Artificial intelligence, intelligent systems, natural language processing - (2024)

CIBO, AGRICOLTURA e ALLEVAMENTI - Farmacologia Veterinaria

CULTURA, ARTE e CREATIVITA' - Culture moderne

INFORMATICA, AUTOMAZIONE e INTELLIGENZA ARTIFICIALE - Digitalizzazione della Cultura e della Creatività

INFORMATICA, AUTOMAZIONE e INTELLIGENZA ARTIFICIALE - Digitalizzazione della Società e della Pubblica Amministrazione

INFORMATICA, AUTOMAZIONE e INTELLIGENZA ARTIFICIALE - Salute e Informatica

LINGUE e LETTERATURA - Anglistica e angloamericanistica

LINGUE e LETTERATURA - Francesistica

PIANETA TERRA, AMBIENTE, CLIMA, ENERGIA e SOSTENIBILITA' - Diritto dell'Ambiente

PIANETA TERRA, AMBIENTE, CLIMA, ENERGIA e SOSTENIBILITA' - Informatica e Ambiente

SCIENZE MATEMATICHE, CHIMICHE, FISICHE - Fisica delle Particelle e dei Nuclei

SCIENZE MATEMATICHE, CHIMICHE, FISICHE - Laboratori innovativi, strumentazione e modellizzazione fisica
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.6.1.0