Skip to Main Content (Press Enter)

Logo UNITO
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione

UNI-FIND
Logo UNITO

|

UNI-FIND

unito.it
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione
  1. Pubblicazioni

Conditioned Variational Autoencoder for Top-N Item Recommendation

Contributo in Atti di convegno
Data di Pubblicazione:
2022
Abstract:
State-of-the-art recommender systems (RSs) generally try to improve the overall recommendation quality. However, users usually tend to explicitly filter the item set based on available categories, e.g., smartphone brands, movie genres. For this reason, an RS that can make this step automatically is likely to increase the user's experience. This paper proposes a Conditioned Variational Autoencoder (C-VAE) for constrained top-N item recommendation where the recommended items must satisfy a given condition. The proposed model architecture is similar to a standard VAE in which a condition vector is fed into the encoder. The constrained ranking is learned during training thanks to a new reconstruction loss that takes the input condition into account. We show that our model generalizes the state-of-the-art Mult-VAE collaborative filtering model. Experimental results underline the potential of CVAE in providing accurate recommendations under constraints. Finally, the performed analyses suggest that C-VAE can be used in other recommendation scenarios, such as context-aware recommendation.
Tipologia CRIS:
04A-Conference paper in volume
Keywords:
Recommender systems; Collaborative filtering; Implicit feedback; Variational autoencoder; Top-N recommendation
Elenco autori:
Carraro, T; Polato, M; Bergamin, L; Aiolli, F
Autori di Ateneo:
POLATO Mirko
Link alla scheda completa:
https://iris.unito.it/handle/2318/1890155
Link al Full Text:
https://iris.unito.it/retrieve/handle/2318/1890155/1084563/icann_2022.pdf
Titolo del libro:
Artificial Neural Networks and Machine Learning – ICANN 2022
Pubblicato in:
LECTURE NOTES IN COMPUTER SCIENCE
Journal
LECTURE NOTES IN COMPUTER SCIENCE
Series
  • Aree Di Ricerca

Aree Di Ricerca

Settori (12)


PE6_11 - Machine learning, statistical data processing and applications using signal processing (e.g. speech, image, video) - (2022)

CIBO, AGRICOLTURA e ALLEVAMENTI - Farmacologia Veterinaria

CULTURA, ARTE e CREATIVITA' - Culture moderne

INFORMATICA, AUTOMAZIONE e INTELLIGENZA ARTIFICIALE - Digitalizzazione della Cultura e della Creatività

INFORMATICA, AUTOMAZIONE e INTELLIGENZA ARTIFICIALE - Digitalizzazione della Società e della Pubblica Amministrazione

INFORMATICA, AUTOMAZIONE e INTELLIGENZA ARTIFICIALE - Industria X.0

INFORMATICA, AUTOMAZIONE e INTELLIGENZA ARTIFICIALE - Salute e Informatica

LINGUE e LETTERATURA - Linguistica

PIANETA TERRA, AMBIENTE, CLIMA, ENERGIA e SOSTENIBILITA' - Diritto dell'Ambiente

PIANETA TERRA, AMBIENTE, CLIMA, ENERGIA e SOSTENIBILITA' - Informatica e Ambiente

SCIENZE DELLA VITA e FARMACOLOGIA - Tecnologie Farmaceutiche e Cosmetiche

SCIENZE MATEMATICHE, CHIMICHE, FISICHE - Teorie e modelli Matematici
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.6.1.0