Skip to Main Content (Press Enter)

Logo UNITO
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione

UNI-FIND
Logo UNITO

|

UNI-FIND

unito.it
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione
  1. Pubblicazioni

Clustering consistency with Dirichlet process mixtures

Articolo
Data di Pubblicazione:
2023
Abstract:
Dirichlet process mixtures are flexible nonparametric models, particularly suited to density estimation and probabilistic clustering. In this work we study the posterior distribution induced by Dirichlet process mixtures as the sample size increases, and more specifically focus on consistency for the unknown number of clusters when the observed data are generated from a finite mixture. Crucially, we consider the situation where a prior is placed on the concentration parameter of the underlying Dirichlet process. Previous findings in the literature suggest that Dirichlet process mixtures are typically not consistent for the number of clusters if the concentration parameter is held fixed and data come from a finite mixture. Here we show that consistency for the number of clusters can be achieved if the concentration parameter is adapted in a fully Bayesian way, as commonly done in practice. Our results are derived for data coming from a class of finite mixtures, with mild assumptions on the prior for the concentration parameter and for a variety of choices of likelihood kernels for the mixture.
Tipologia CRIS:
03A-Articolo su Rivista
Keywords:
Asymptotics, Bayesian nonparametrics, Consistency, Clustering, Dirichlet process mixture, Number of components
Elenco autori:
Filippo Ascolani; Antonio Lijoi; Giovanni Rebaudo; Giacomo Zanella
Autori di Ateneo:
REBAUDO Giovanni
Link alla scheda completa:
https://iris.unito.it/handle/2318/1898303
Link al Full Text:
https://iris.unito.it/retrieve/handle/2318/1898303/1117190/DPM_Cons_neutral.pdf
Pubblicato in:
BIOMETRIKA
Journal
  • Dati Generali
  • Aree Di Ricerca

Dati Generali

URL

https://academic.oup.com/biomet/advance-article/doi/10.1093/biomet/asac051/6696237

Aree Di Ricerca

Settori


PE1_15 - Generic statistical methodology and modelling - (2022)
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.6.1.0