Skip to Main Content (Press Enter)

Logo UNITO
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione

UNI-FIND
Logo UNITO

|

UNI-FIND

unito.it
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione
  1. Pubblicazioni

Is a Greedy Covering Strategy an Extreme Boosting?

Contributo in Atti di convegno
Data di Pubblicazione:
2002
Abstract:
A new view of majority voting as a Monte Carlo stochastic algorithm is presented in this paper. Relation between the two approaches allows Adaboost's example weighting strategy to be compared with the greedy covering strategy used for a long time in Machine Learning. The greedy covering strategy does not clearly show overfitting, it runs in at least one order of magnitude less time, it reaches zero error on the training set in few trials, and the error on the test set is most of the time comparable to that exhibited by AdaBoost.
Tipologia CRIS:
04B-Conference paper in rivista
Elenco autori:
Roberto Esposito; Lorenza Saitta
Autori di Ateneo:
ESPOSITO Roberto
Link alla scheda completa:
https://iris.unito.it/handle/2318/49557
Pubblicato in:
LECTURE NOTES IN COMPUTER SCIENCE
Journal
LECTURE NOTES IN COMPUTER SCIENCE
Series
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.6.1.0