Skip to Main Content (Press Enter)

Logo UNITO
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione

UNI-FIND
Logo UNITO

|

UNI-FIND

unito.it
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione
  1. Persone

Fitting Early Phases of the COVID-19 Outbreak: A Comparison of the Performances of Used Models

Articolo
Data di Pubblicazione:
2023
Abstract:
The COVID-19 outbreak involved a spread of prediction efforts, especially in the early pandemic phase. A better understanding of the epidemiological implications of the different models seems crucial for tailoring prevention policies. This study aims to explore the concordance and discrepancies in outbreak prediction produced by models implemented and used in the first wave of the epidemic. To evaluate the performance of the model, an analysis was carried out on Italian pandemic data from February 24, 2020. The epidemic models were fitted to data collected at 20, 30, 40, 50, 60, 70, 80, 90, and 98 days (the entire time series). At each time step, we made predictions until May 31, 2020. The Mean Absolute Error (MAE) and the Mean Absolute Percentage Error (MAPE) were calculated. The GAM model is the most suitable parameterization for predicting the number of new cases; exponential or Poisson models help predict the cumulative number of cases. When the goal is to predict the epidemic peak, GAM, ARIMA, or Bayesian models are preferable. However, the prediction of the pandemic peak could be made carefully during the early stages of the epidemic because the forecast is affected by high uncertainty and may very likely produce the wrong results.
Tipologia CRIS:
03A-Articolo su Rivista
Keywords:
COVID-19; early phase; epidemic models; prediction model; prevention policy
Elenco autori:
Sciannameo, Veronica; Azzolina, Danila; Lanera, Corrado; Acar, Aslihan Şentürk; Corciulo, Maria Assunta; Comoretto, Rosanna Irene; Berchialla, Paola; Gregori, Dario
Autori di Ateneo:
BERCHIALLA Paola
COMORETTO Rosanna Irene
Link alla scheda completa:
https://iris.unito.it/handle/2318/1941310
Link al Full Text:
https://iris.unito.it/retrieve/handle/2318/1941310/1204737/healthcare-11-02363.pdf
Pubblicato in:
HEALTHCARE
Journal
  • Aree Di Ricerca

Aree Di Ricerca

Settori (18)


LS7_9 - Public health and epidemiology - (2022)

CIBO, AGRICOLTURA e ALLEVAMENTI - Farmacologia Veterinaria

CIBO, AGRICOLTURA e ALLEVAMENTI - Patologia e malattie degli animali

CIBO, AGRICOLTURA e ALLEVAMENTI - Scienze cliniche veterinarie

MEDICINA, SALUTE e BENESSERE - Diagnostica e Imaging

MEDICINA, SALUTE e BENESSERE - Disturbi neuropsichiatrici

MEDICINA, SALUTE e BENESSERE - Epidemiologia

MEDICINA, SALUTE e BENESSERE - Malattie neurologiche e neurodegenerative

MEDICINA, SALUTE e BENESSERE - Management del malato e delle malattie

MEDICINA, SALUTE e BENESSERE - Medicina Rigenerativa e Cellule Staminali

MEDICINA, SALUTE e BENESSERE - Oncologia e Tumori

MEDICINA, SALUTE e BENESSERE - Prevenzione e corretti stili di vita

MEDICINA, SALUTE e BENESSERE - Psicologia clinica

MEDICINA, SALUTE e BENESSERE - Ricerca Traslazionale e Clinica

MEDICINA, SALUTE e BENESSERE - Trapianti e medicina rigenerativa

SCIENZE DELLA VITA e FARMACOLOGIA - Interazioni tra molecole, cellule, organismi e ambiente

SCIENZE DELLA VITA e FARMACOLOGIA - Molecole bioattive

SCIENZE DELLA VITA e FARMACOLOGIA - Sviluppo del sistema nervoso e plasticità
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.5.0.1