The Impact of CPU Frequency Scaling on Power Consumption of Computing Infrastructures
Contributo in Atti di convegno
Data di Pubblicazione:
2020
Abstract:
Since the demand for computing power increases, new architectures emerged to obtain better performance. Reducing the power and energy consumption of these architectures is one of the main challenges to achieving high-performance computing. Current research trends aim at developing new software and hardware techniques to achieve the best performance and energy trade-offs. In this work, we investigate the impact of different CPU frequency scaling techniques such as ondemand, performance, and powersave on the power and energy consumption of multi-core based computer infrastructure. We apply these techniques in PAMPAR, a parallel benchmark suite implemented in PThreads, OpenMP, MPI-1, and MPI-2 (spawn). We measure the energy and execution time of 10 benchmarks, varying the number of threads. Our results show that although powersave consumes up to 43.1% less power than performance and ondemand governors, it consumes the triple of energy due to the high execution time. Our experiments also show that the performance governor consumes up to 9.8% more energy than ondemand for CPU-bound benchmarks. Finally, our results show that PThreads has the lowest power consumption, consuming less than the sequential version for memory-bound benchmarks. Regarding performance, the performance governor achieved 3% of performance over the ondemand.
Tipologia CRIS:
04A-Conference paper in volume
Keywords:
CPU Frequency Governors; PAMPAR; Power consumption
Elenco autori:
Adriano Marques Garcia, Matheus Serpa, Dalvan Griebler, Claudio Schepke, Luiz G. L. Fernandes, Philippe O. A. Navaux
Link alla scheda completa:
Link al Full Text:
Titolo del libro:
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Pubblicato in: