Skip to Main Content (Press Enter)

Logo UNITO
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione

UNI-FIND
Logo UNITO

|

UNI-FIND

unito.it
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione
  1. Pubblicazioni

Machine Learning CT-Based Automatic Nodal Segmentation and PET Semi-Quantification of Intraoperative 68Ga-PSMA-11 PET/CT Images in High-Risk Prostate Cancer: A Pilot Study

Articolo
Data di Pubblicazione:
2023
Abstract:
High-resolution intraoperative PET/CT specimen imaging, coupled with prostate-specific membrane antigen (PSMA) molecular targeting, holds great potential for the rapid ex vivo identification of disease localizations in high-risk prostate cancer patients undergoing surgery. However, the accurate analysis of radiotracer uptake would require time-consuming manual volumetric segmentation of 3D images. The aim of this study was to test the feasibility of using machine learning to perform automatic nodal segmentation of intraoperative 68Ga-PSMA-11 PET/CT specimen images. Six (n = 6) lymph-nodal specimens were imaged in the operating room after an e.v. injection of 2.1 MBq/kg of 68Ga-PSMA-11. A machine learning-based approach for automatic lymph-nodal segmentation was developed using only open-source Python libraries (Scikit-learn, SciPy, Scikit-image). The implementation of a k-means clustering algorithm (n = 3 clusters) allowed to identify lymph-nodal structures by leveraging differences in tissue density. Refinement of the segmentation masks was performed using morphological operations and 2D/3D-features filtering. Compared to manual segmentation (ITK-SNAP v4.0.1), the automatic segmentation model showed promising results in terms of weighted average precision (97–99%), recall (68–81%), Dice coefficient (80–88%) and Jaccard index (67–79%). Finally, the ML-based segmentation masks allowed to automatically compute semi-quantitative PET metrics (i.e., SUVmax), thus holding promise for facilitating the semi-quantitative analysis of PET/CT images in the operating room.
Tipologia CRIS:
03A-Articolo su Rivista
Keywords:
68; Ga-PSMA-11; automatic segmentation; machine learning; PET/CT; PET/CT specimen images; prostate cancer
Elenco autori:
Rovera G.; Grimaldi S.; Oderda M.; Finessi M.; Giannini V.; Passera R.; Gontero P.; Deandreis D.
Autori di Ateneo:
GIANNINI Valentina
GONTERO Paolo
ODERDA Marco
ROVERA GUIDO
Link alla scheda completa:
https://iris.unito.it/handle/2318/1951151
Link al Full Text:
https://iris.unito.it/retrieve/handle/2318/1951151/1227239/diagnostics-13-03013.pdf
Pubblicato in:
DIAGNOSTICS
Journal
  • Aree Di Ricerca

Aree Di Ricerca

Settori (16)


LS7_2 - Medical technologies and tools (including genetic tools and biomarkers) for prevention, diagnosis, monitoring and treatment of diseases - (2022)

CIBO, AGRICOLTURA e ALLEVAMENTI - Farmacologia Veterinaria

CIBO, AGRICOLTURA e ALLEVAMENTI - Patologia e malattie degli animali

CIBO, AGRICOLTURA e ALLEVAMENTI - Scienze cliniche veterinarie

MEDICINA, SALUTE e BENESSERE - Diagnostica e Imaging

MEDICINA, SALUTE e BENESSERE - Disturbi neuropsichiatrici

MEDICINA, SALUTE e BENESSERE - Epidemiologia

MEDICINA, SALUTE e BENESSERE - Malattie neurologiche e neurodegenerative

MEDICINA, SALUTE e BENESSERE - Medicina Rigenerativa e Cellule Staminali

MEDICINA, SALUTE e BENESSERE - Oncologia e Tumori

MEDICINA, SALUTE e BENESSERE - Ricerca Traslazionale e Clinica

MEDICINA, SALUTE e BENESSERE - Trapianti e medicina rigenerativa

SCIENZE DELLA VITA e FARMACOLOGIA - Basi molecolari e cellulari delle patologie

SCIENZE DELLA VITA e FARMACOLOGIA - Interazioni tra molecole, cellule, organismi e ambiente

SCIENZE DELLA VITA e FARMACOLOGIA - Molecole bioattive

SCIENZE DELLA VITA e FARMACOLOGIA - Sviluppo del sistema nervoso e plasticità
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.4.2.0