Data di Pubblicazione:
2023
Abstract:
In an end-to-end learned image compression framework, an encoder projects the image on a low-dimensional, quantized, latent space while a decoder recovers the original image. The encoder and decoder are jointly trained with standard gradient backpropagation to minimize a rate-distortion (RD) cost function accounting for both distortions between the original and reconstructed image and the quantized latent space rate. State-of-the-art methods rely on an auxiliary neural network to estimate the rate R of the latent space. We propose a non-parametric entropy model that estimates the statistical frequencies of the quantized latent space during training. The proposed model is differentiable, so it can be plugged into the cost function to be minimized as a rate proxy and can be adapted to a given context without retraining. Our experiments show comparable performance with a learned rate estimator and better performance when is adapted over a temporal context.
Tipologia CRIS:
04A-Conference paper in volume
Keywords:
autoencoder; differentiable entropy; entropy estimation; image compression; Learned image coding
Elenco autori:
Presta A.; Fiandrotti A.; Tartaglione E.; Grangetto M.
Link alla scheda completa:
Titolo del libro:
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Pubblicato in: