Skip to Main Content (Press Enter)

Logo UNITO
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione

UNI-FIND
Logo UNITO

|

UNI-FIND

unito.it
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione
  1. Pubblicazioni

A Differentiable Entropy Model for Learned Image Compression

Contributo in Atti di convegno
Data di Pubblicazione:
2023
Abstract:
In an end-to-end learned image compression framework, an encoder projects the image on a low-dimensional, quantized, latent space while a decoder recovers the original image. The encoder and decoder are jointly trained with standard gradient backpropagation to minimize a rate-distortion (RD) cost function accounting for both distortions between the original and reconstructed image and the quantized latent space rate. State-of-the-art methods rely on an auxiliary neural network to estimate the rate R of the latent space. We propose a non-parametric entropy model that estimates the statistical frequencies of the quantized latent space during training. The proposed model is differentiable, so it can be plugged into the cost function to be minimized as a rate proxy and can be adapted to a given context without retraining. Our experiments show comparable performance with a learned rate estimator and better performance when is adapted over a temporal context.
Tipologia CRIS:
04A-Conference paper in volume
Keywords:
autoencoder; differentiable entropy; entropy estimation; image compression; Learned image coding
Elenco autori:
Presta A.; Fiandrotti A.; Tartaglione E.; Grangetto M.
Autori di Ateneo:
FIANDROTTI Attilio
GRANGETTO Marco
Link alla scheda completa:
https://iris.unito.it/handle/2318/1951390
Titolo del libro:
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Pubblicato in:
LECTURE NOTES IN COMPUTER SCIENCE
Journal
LECTURE NOTES IN COMPUTER SCIENCE
Series
  • Dati Generali
  • Aree Di Ricerca

Dati Generali

URL

https://link.springer.com/chapter/10.1007/978-3-031-43148-7_28

Aree Di Ricerca

Settori (16)


PE6_7 - Artificial intelligence, intelligent systems, natural language processing - (2022)

PE6_8 - Computer graphics, computer vision, multimedia, computer games - (2022)

PE7_7 - Signal processing - (2022)

CIBO, AGRICOLTURA e ALLEVAMENTI - Farmacologia Veterinaria

CULTURA, ARTE e CREATIVITA' - Culture moderne

INFORMATICA, AUTOMAZIONE e INTELLIGENZA ARTIFICIALE - Digitalizzazione della Cultura e della Creatività

INFORMATICA, AUTOMAZIONE e INTELLIGENZA ARTIFICIALE - Digitalizzazione della Società e della Pubblica Amministrazione

INFORMATICA, AUTOMAZIONE e INTELLIGENZA ARTIFICIALE - Industria X.0

INFORMATICA, AUTOMAZIONE e INTELLIGENZA ARTIFICIALE - Salute e Informatica

LINGUE e LETTERATURA - Anglistica e angloamericanistica

LINGUE e LETTERATURA - Francesistica

PIANETA TERRA, AMBIENTE, CLIMA, ENERGIA e SOSTENIBILITA' - Diritto dell'Ambiente

PIANETA TERRA, AMBIENTE, CLIMA, ENERGIA e SOSTENIBILITA' - Informatica e Ambiente

SCIENZE MATEMATICHE, CHIMICHE, FISICHE - Fisica delle Particelle e dei Nuclei

SCIENZE MATEMATICHE, CHIMICHE, FISICHE - Laboratori innovativi, strumentazione e modellizzazione fisica

SCIENZE MATEMATICHE, CHIMICHE, FISICHE - Teorie e modelli Matematici
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.6.1.0