Data di Pubblicazione:
2024
Abstract:
Salt stress is presently a major environmental concern, given the huge number of soils affected by the presence of dissolved salts. Therefore, it is necessary to find solutions, preferably nature-based ones, to deal with this problem. In this study, biochar, a product made from plant biomass residues through the process of pyrolysis, was tested to alleviate salt stress on lettuce (Lactuca sativa L.) plants. Six different concentrations of NaCl were tested: 0, 50, 100, 200, 300 and 400 mM with and without the addition of 5% (w/w) biochar. Biochar ability to mitigate salinity damage was assessed by means of both biometric (fresh weight), physiological (chlorophyll content), and biochemical (i.e., electrolyte leakage, total antioxidant power, total soluble proteins, free amino acids, and mineral content) parameters. The experiment lasted four weeks. The results showed that NaCl has a negative effect from the concentration of 100–200 mM and that biochar was to some extent effective in mitigating the negative effects of salt on plant physiology; nevertheless, biochar failed to counteract Na accumulation. Similarly, biochar did not influence the content of free amino acids in lettuce leaves, but enhanced the expression of several parameters, such as total antioxidant power, fresh weight, chlorophyll content, total soluble protein, K content, although only clearly evident in some cases. Overall, the present study showed that biochar is a viable solution to counteract the damage caused by high salt concentrations on plant growth.
Tipologia CRIS:
03A-Articolo su Rivista
Keywords:
Antioxidants, Charcoal, Electrolyte leakage, Free amino acids, Salinity stress.
Elenco autori:
Riccardo Fedeli; Andrea Vannini; Nesrine Djatouf; Silvia Celletti; Stefano Loppi
Link alla scheda completa:
Link al Full Text:
Pubblicato in: