Skip to Main Content (Press Enter)

Logo UNITO
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione

UNI-FIND
Logo UNITO

|

UNI-FIND

unito.it
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione
  1. Pubblicazioni

Adopting transfer learning for neuroimaging: a comparative analysis with a custom 3D convolution neural network model

Articolo
Data di Pubblicazione:
2022
Abstract:
Background: In recent years, neuroimaging with deep learning (DL) algorithms have made remarkable advances in the diagnosis of neurodegenerative disorders. However, applying DL in different medical domains is usually challenged by lack of labeled data. To address this challenge, transfer learning (TL) has been applied to use state-of-the-art convolution neural networks pre-trained on natural images. Yet, there are differences in characteristics between medical and natural images, also image classification and targeted medical diagnosis tasks. The purpose of this study is to investigate the performance of specialized and TL in the classification of neurodegenerative disorders using 3D volumes of 18F-FDG-PET brain scans. Results: Results show that TL models are suboptimal for classification of neurodegenerative disorders, especially when the objective is to separate more than two disorders. Additionally, specialized CNN model provides better interpretations of predicted diagnosis. Conclusions: TL can indeed lead to superior performance on binary classification in timely and data efficient manner, yet for detecting more than a single disorder, TL models do not perform well. Additionally, custom 3D model performs comparably to TL models for binary classification, and interestingly perform better for diagnosis of multiple disorders. The results confirm the superiority of the custom 3D-CNN in providing better explainable model compared to TL adopted ones.
Tipologia CRIS:
03A-Articolo su Rivista
Keywords:
Brain Neurodegenerative Disorders; Convolution Neural Networks; Medical Image Classification; Transfer Learning
Elenco autori:
Soliman A.; Chang J. R.; Etminani K.; Byttner S.; Davidsson A.; Martinez-Sanchis B.; Camacho V.; Bauckneht M.; Stegeran R.; Ressner M.; Agudelo-Cifuentes M.; Chincarini A.; Brendel M.; Rominger A.; Bruffaerts R.; Vandenberghe R.; Kramberger M. G.; Trost M.; Nicastro N.; Frisoni G. B.; Lemstra A. W.; Berckel B. N. M.; Pilotto A.; Padovani A.; Morbelli S.; Aarsland D.; Nobili F.; Garibotto V.; Ochoa-Figueroa M.
Autori di Ateneo:
MORBELLI Silvia Daniela
Link alla scheda completa:
https://iris.unito.it/handle/2318/1956292
Link al Full Text:
https://iris.unito.it/retrieve/handle/2318/1956292/1261731/12911_2022_Article_2054.pdf
Pubblicato in:
BMC MEDICAL INFORMATICS AND DECISION MAKING
Journal
  • Aree Di Ricerca

Aree Di Ricerca

Settori (14)


LS7_1 - Medical imaging for prevention, diagnosis and monitoring of diseases - (2022)

CIBO, AGRICOLTURA e ALLEVAMENTI - Farmacologia Veterinaria

CIBO, AGRICOLTURA e ALLEVAMENTI - Patologia e malattie degli animali

CIBO, AGRICOLTURA e ALLEVAMENTI - Scienze cliniche veterinarie

MEDICINA, SALUTE e BENESSERE - Disturbi neuropsichiatrici

MEDICINA, SALUTE e BENESSERE - Epidemiologia

MEDICINA, SALUTE e BENESSERE - Malattie neurologiche e neurodegenerative

MEDICINA, SALUTE e BENESSERE - Medicina Rigenerativa e Cellule Staminali

MEDICINA, SALUTE e BENESSERE - Oncologia e Tumori

MEDICINA, SALUTE e BENESSERE - Ricerca Traslazionale e Clinica

MEDICINA, SALUTE e BENESSERE - Trapianti e medicina rigenerativa

SCIENZE DELLA VITA e FARMACOLOGIA - Interazioni tra molecole, cellule, organismi e ambiente

SCIENZE DELLA VITA e FARMACOLOGIA - Molecole bioattive

SCIENZE DELLA VITA e FARMACOLOGIA - Sviluppo del sistema nervoso e plasticità
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.5.0.1